A primal all-integer algorithm based on irreducible solutions

被引:10
作者
Haus, UU [1 ]
Köppe, M [1 ]
Weismantel, R [1 ]
机构
[1] Otto Von Guericke Univ, Dept Math, IMO, D-39106 Magdeburg, Germany
关键词
D O I
10.1007/s10107-003-0384-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces an exact primal augmentation algorithm for solving general linear integer programs. The algorithm iteratively substitutes one column in a tableau by other columns that correspond to irreducible solutions of certain linear diophantine inequalities. We prove that various versions of our algorithm are finite. It is a major concern in this paper to show how the subproblem of replacing a column can be accomplished effectively. An implementation of the presented algorithms is given. Computational results for a number of hard 0/1 integer programs from the MIPLIB demonstrate the practical power of the method.
引用
收藏
页码:205 / 246
页数:42
相关论文
共 31 条
[1]   Solving a system of linear diophantine equations with lower and upper bounds on the variables [J].
Aardal, K ;
Hurkens, CAJ ;
Lenstra, AK .
MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (03) :427-442
[2]  
AARDAL K, 2000, 20002 CORE U CATH LO
[3]  
[Anonymous], 1960, RM2597PR RAND CORP
[4]   SET-COVERING PROBLEM .2. ALGORITHM FOR SET PARTITIONING [J].
BALAS, E ;
PADBERG, M .
OPERATIONS RESEARCH, 1975, 23 (01) :74-90
[5]  
Ben-Israel A., 1962, CAHIERS CTR ETUDES R, V4, P215
[6]  
Bixby RE, 1998, Optima, V58, P12
[7]  
CONTI P, 1991, LECT NOTES COMPUT SC, V539, P130
[8]  
Cook W., 1993, ORSA Journal on Computing, V5, P206, DOI 10.1287/ijoc.5.2.206
[9]  
Diaconis P, 1996, BOLYAI MATH STUD, V2, P173
[10]  
Garfinkel R.S., 1972, INTEGER PROGRAMMING