Control of pain initiation by endogenous cannabinoids

被引:898
作者
Calignano, A
La Rana, G
Giuffrida, A
Piomelli, D
机构
[1] Univ Naples, Dipartimento Farmacol Sperimentale, I-80131 Naples, Italy
[2] Inst Neurosci, San Diego, CA 92121 USA
关键词
D O I
10.1038/28393
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The potent analgesic effects of cannabis-like drugs(1-4) and the presence of CB1-type cannabinoid receptors in pain-processing areas of the brain and spinal cord(5,6) indicate that endogenous cannabinoids such as anandamide(7) may contribute to the control of pain transmission within the central nervous system (CNS)(8). Here we show that anandamide attenuates the pain behaviour produced by chemical damage to cutaneous tissue by interacting with CB1-like cannabinoid receptors located outside the CNS. Palmitylethanolamide (PEA), which is released together with anandamide from a common phospholipid precursor(9), exerts a similar effect by activating peripheral CB2-like receptors. When administered together, the two compounds act synergistically, reducing pain responses 100-fold more potently than does each compound alone. Gas-chromatography/mass-spectrometry measurements indicate that the levels of anandamide and PEA in the skin are enough to cause a tonic activation of local cannabinoid receptors. In agreement with this possibility, the CB1 antagonist SR141716A and the CB2 antagonist SR144528 prolong and enhance the pain behaviour produced by tissue damage. These results indicate that peripheral CB1-like and CBZ-like receptors participate in the intrinsic control of pain initiation and that locally generated anandamide and PEA may mediate this effect.
引用
收藏
页码:277 / 281
页数:5
相关论文
共 29 条
[1]   A PROPOSED AUTACOID MECHANISM CONTROLLING MASTOCYTE BEHAVIOR [J].
ALOE, L ;
LEON, A ;
LEVIMONTALCINI, R .
AGENTS AND ACTIONS, 1993, 39 :C145-C147
[2]  
[Anonymous], 1987, PAIN
[3]   Functional role of high-affinity anandamide transport, as revealed by selective inhibition [J].
Beltramo, M ;
Stella, N ;
Calignano, A ;
Lin, SY ;
Makriyannis, A ;
Piomelli, D .
SCIENCE, 1997, 277 (5329) :1094-1097
[4]  
Cadas H, 1997, J NEUROSCI, V17, P1226
[5]  
CODERRE TJ, 1992, J NEUROSCI, V12, P3665
[6]   Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides [J].
Cravatt, BF ;
Giang, DK ;
Mayfield, SP ;
Boger, DL ;
Lerner, RA ;
Gilula, NB .
NATURE, 1996, 384 (6604) :83-87
[7]   ISOLATION AND STRUCTURE OF A BRAIN CONSTITUENT THAT BINDS TO THE CANNABINOID RECEPTOR [J].
DEVANE, WA ;
HANUS, L ;
BREUER, A ;
PERTWEE, RG ;
STEVENSON, LA ;
GRIFFIN, G ;
GIBSON, D ;
MANDELBAUM, A ;
ETINGER, A ;
MECHOULAM, R .
SCIENCE, 1992, 258 (5090) :1946-1949
[8]   SUBCUTANEOUS FORMALIN-INDUCED ACTIVITY OF DORSAL HORN NEURONS IN THE RAT - DIFFERENTIAL RESPONSE TO AN INTRATHECAL OPIATE ADMINISTERED PRE-FORMALIN OR POST-FORMALIN [J].
DICKENSON, AH ;
SULLIVAN, AF .
PAIN, 1987, 30 (03) :349-360
[9]   FORMATION AND INACTIVATION OF ENDOGENOUS CANNABINOID ANANDAMIDE IN CENTRAL NEURONS [J].
DIMARZO, V ;
FONTANA, A ;
CADAS, H ;
SCHINELLI, S ;
CIMINO, G ;
SCHWARTZ, JC ;
PIOMELLI, D .
NATURE, 1994, 372 (6507) :686-691
[10]   FORMALIN TEST - QUANTITATIVE STUDY OF ANALGESIC EFFECTS OF MORPHINE, MEPERIDINE, AND BRAIN-STEM STIMULATION IN RATS AND CATS [J].
DUBUISSON, D ;
DENNIS, SG .
PAIN, 1977, 4 (02) :161-174