Origin of Pressure Effects on Regioselectivity and Enantioselectivity in the Rhodium-Catalyzed Hydroformylation of Styrene with (S,S,S)-BisDiazaphos

被引:83
作者
Watkins, Avery L. [1 ]
Landis, Clark R. [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
PHOSPHINE-PHOSPHITE LIGANDS; ASYMMETRIC HYDROFORMYLATION; BITE ANGLE; COMPLEXES; OLEFINS; DEUTERIOFORMYLATION; RH(I)-(R; S)-BINAPHOS; DIPHOSPHINES; TEMPERATURE; 1-HEXENE;
D O I
10.1021/ja909619a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gas pressure influences the regioselectivity and enantioselectivity of aryl alkene hydroformylation as catalyzed by rhodium complexes of the BisDiazaphos ligand. Deuterioformylation of styrene at 80 degrees C results in extensive deuterium incorporation into the terminal position of the recovered styrene. This result establishes that rhodium hydride addition to form a branched alkyl rhodium occurs reversibly. The independent effect of carbon monoxide and hydrogen partial pressures on regioselectivity and enantioselectivity were measured. From 40 to 120 psi, both regioisomer (b:l) and enantiomer (R:S) ratios are proportional to the carbon monoxide partial pressure but approximately independent of the hydrogen pressure. The absolute rate for linear aldehyde formation was found to be inhibited by carbon monoxide pressure, whereas the rate for branched aldehyde formation is independent of CO pressure up to 80 psi; above 80 psi one observes the onset of inhibition. The carbon monoxide dependence of the rate and enantioselectivity for branched aldehyde indicates that the rate of production of (S)-2-phenyl propanal is inhibited by CO pressure, while the formation rate of the major enantiomer, (R)-2-phenyl propanal, is approximately independent of CO pressure. Hydroformylation of alpha-deuteriostyrene at 80 degrees C followed by conversion to (S)-2-benzyl-4-nitrobutanal reveals that 83% of the 2-phenylpropanal resulted from rhodium hydride addition to the re face of styrene, and 83% of the 3-phenylpropanal resulted from rhodium hydride addition to the si face of styrene. On the basis of these results, kinetic and steric/electronic models for the determination of regioselectivity and enantioselectivity are proposed.
引用
收藏
页码:10306 / 10317
页数:12
相关论文
共 43 条