Overexpression of copper/zinc superoxide dismutase: A novel cause of murine muscular dystrophy

被引:47
作者
Rando, TA [1 ]
Crowley, RS
Carlson, EJ
Epstein, CJ
Mohapatra, PK
机构
[1] Stanford Univ, Med Ctr, Sch Med, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA
[2] Dept Vet Affairs, Palo Alto, CA USA
[3] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA
关键词
D O I
10.1002/ana.410440315
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Oxidative injury underlies the cellular injury and cell death in a variety of disease states. In muscular dystrophies, evidence from in vivo and in vitro studies suggests that muscle degeneration may be secondary to an increased susceptibility to oxidative stress. To address the role of free radical metabolism in the pathogenetic process of muscular dystrophies, we examined the muscle of transgenic mice that overexpress copper/zinc (Cu/Zn) superoxide dismutase. Overexpression of this enzyme can sensitize cells to oxidative injury, and Cu/Zn superoxide dismutase activity was elevated approximately fourfold above control levels in skeletal muscle of the transgenic strain. Examination of serum creatine phosphokinase levels in these mice revealed significant elevations after 2 months of age, indicative of active muscle breakdown. By 8 months of age, there was gross atrophy of the quadriceps muscle, and other hindlimb muscles were variably affected. Histologically, there was evidence of widespread muscle necrosis and regeneration, fiber splitting, and replacement of muscle with adipose and fibrous connective tissue, typical of a muscular dystrophy. Associated with the development of this degeneration was an increase in the levels of lipid peroxidation in the muscle of Cu/Zn superoxide dismutase transgenic mice, highlighting the central role of oxidative injury in this pathogenetic process. These results demonstrate that oxidative damage can be the primary pathogenetic process underlying a muscular dystrophy.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 20 条
[1]   THE BALANCE BETWEEN CU,ZN-SUPEROXIDE DISMUTASE AND CATALASE AFFECTS THE SENSITIVITY OF MOUSE EPIDERMAL-CELLS TO OXIDATIVE STRESS [J].
AMSTAD, P ;
PESKIN, A ;
SHAH, G ;
MIRAULT, ME ;
MORET, R ;
ZBINDEN, I ;
CERUTTI, P .
BIOCHEMISTRY, 1991, 30 (38) :9305-9313
[2]  
AMSTAD P, 1994, J BIOL CHEM, V269, P1606
[3]   CUZN SUPEROXIDE-DISMUTASE (CUZNSOD) TRANSGENIC MICE SHOW RESISTANCE TO THE LETHAL EFFECTS OF METHYLENEDIOXYAMPHETAMINE (MDA) AND OF METHYLENEDIOXYMETHAMPHETAMINE (MDMA) [J].
CADET, JL ;
LADENHEIM, B ;
BAUM, I ;
CARLSON, E ;
EPSTEIN, C .
BRAIN RESEARCH, 1994, 655 (1-2) :259-262
[4]  
CHAN PH, 1990, STROKE, V21, P80
[5]   Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide [J].
deHaan, JB ;
Cristiano, F ;
Iannello, R ;
Bladier, C ;
Kelner, MJ ;
Kola, I .
HUMAN MOLECULAR GENETICS, 1996, 5 (02) :283-292
[6]  
Emery AE, 1993, DUCHENNE MUSCULAR DY
[7]   TRANSGENIC MICE WITH INCREASED CU/ZN-SUPEROXIDE DISMUTASE ACTIVITY - ANIMAL-MODEL OF DOSAGE EFFECTS IN DOWN-SYNDROME [J].
EPSTEIN, CJ ;
AVRAHAM, KB ;
LOVETT, M ;
SMITH, S ;
ELROYSTEIN, O ;
ROTMAN, G ;
BRY, C ;
GRONER, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (22) :8044-8048
[8]  
ESTERBAUER H, 1990, METHOD ENZYMOL, V186, P407
[9]   Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? [J].
Gerlai, R .
TRENDS IN NEUROSCIENCES, 1996, 19 (05) :177-181
[10]  
Gutteridge J. M. C., 1989, FREE RADICALS BIOL M