Wide-band Lorentzian media in the FDTD algorithm

被引:21
作者
Koledintseva, MY [1 ]
Drewniak, JL
Pommerenke, DJ
Antonini, G
Orlandi, A
Rozanov, KN
机构
[1] Univ Missouri, EMC Lab, Rolla, MO 65409 USA
[2] Univ Aquila, Dept Elect Engn, I-67040 Poggio Di Roio, AQ, Italy
[3] Russian Acad Sci, Inst Theoret & Appl Electromagnet, Microwave Lab, Moscow 125412, Russia
关键词
Debye model; dispersive media; finite-difference time-domain (FDTD) technique; Lorentzian model; recursive convolution;
D O I
10.1109/TEMC.2005.847406
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the case of a wide-band Lorentzian (WBL) algorithm in the finite-difference time-domain (FDTD) modeling of dispersive media. It is shown herein that the WBL model is a physically meaningful and practically useful case of the frequency behavior of materials along with the Debye and narrow-band Lorentzian (NBL). The recursive convolution algorithms for the finite-difference time-domain technique for NBL and WBL models differ. The Debye model, which is suitable for comparatively low-frequency dispersive materials, may not have sufficient number of parameters for describing the wide-band material, especially if this material exhibits pronounced absorption at higher frequencies. It is shown that the Debye model can be used, if the Q-factor of the linear circuit analog corresponding to the Lorentzian model of the material is less than approximately 0.8. If the quality factor is in the limits of about 0.8 < Q <= 1, then the WBL model is appropriate. For Q > 1, the NBL model must be applied. The NBL model is suitable for dielectrics exhibiting resonance effects in the microwave frequency range. The WBL model is typical for composites filled with conducting fibers.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 19 条
[1]   IMPROVED TECHNIQUE FOR DETERMINING COMPLEX PERMITTIVITY WITH THE TRANSMISSION REFLECTION METHOD [J].
BAKERJARVIS, J ;
VANZURA, EJ ;
KISSICK, WA .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (08) :1096-1103
[2]  
Koledintseva M. Y., 2002, J ELECT ENG, V53, P97
[3]  
Koledintseva MY, 2004, 2004 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SYMPOSIUM RECORD 1-3, P309
[4]  
KOLEDINTSEVA MY, ALGORITHM LORENTZIAN
[5]  
KOLEDINTSEVA MY, 2002, P EMC EUROPE 5 INT S, P687
[6]  
KOLEDINTSEVA MY, 2003, P IEEE INT S EL COMP, V2, P898
[7]  
Korn G. A., 1968, Mathematical Handbook for Scientists and Engineers
[8]  
Kunz K. S., 1993, FINITE DIFFERENCE TI
[9]   Dielectric properties of fiber-filled composites [J].
Lagarkov, AN ;
Matytsin, SM ;
Rozanov, KN ;
Sarychev, AK .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (07) :3806-3814
[10]  
LAGARKOV AN, 2004, ADV MAGNETIC MAT, V3