A modular and extensible RNA-based gene-regulatory platform for engineering cellular function

被引:287
作者
Win, Maung Nyan [1 ]
Smolke, Christina D. [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
aptamer; regulatory systems; ribozyme; RNA switches; synthetic biology;
D O I
10.1073/pnas.0703961104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Engineered biological systems hold promise in addressing pressing human needs in chemical processing, energy production, materials construction, and maintenance and enhancement of human health and the environment. However, significant advancements in our ability to engineer biological systems have been limited by the foundational tools available for reporting on, responding to, and controlling intracellular components in living systems. Portable and scalable platforms are needed for the reliable construction of such communication and control systems across diverse organisms. We report an extensible RNA-based framework for engineering ligand-controlled gene-regulatory systems, called ribozyme switches, that exhibits tunable regulation, design modularity, and target specificity. These switch platforms contain a sensor domain, comprised of an aptamer sequence, and an actuator domain, comprised of a hammerhead ribozyme sequence. We examined two modes of standardized information transmission between these domains and demonstrate a mechanism that allows for the reliable and modular assembly of functioning synthetic RNA switches and regulation of ribozyme activity in response to various effectors. In addition to demonstrating examples of small molecule-responsive, in vivo functional, allosteric hammerhead ribozymes, this work describes a general approach for the construction of portable and scalable gene-regulatory systems. We demonstrate the versatility of the platform in implementing application-specific control systems for small molecule-mediated regulation of cell growth and noninvasive in vivo sensing of metabolite production.
引用
收藏
页码:14283 / 14288
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 1983, COLD SPRING HARBOR L
[2]   A tetracycline-binding RNA aptamer [J].
Berens, C ;
Thain, A ;
Schroeder, R .
BIOORGANIC & MEDICINAL CHEMISTRY, 2001, 9 (10) :2549-2556
[3]   The structure, function and application of the hammerhead ribozyme [J].
Birikh, KR ;
Heaton, PA ;
Eckstein, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 245 (01) :1-16
[4]   Aptamers come of age - at last [J].
Bunka, David H. J. ;
Stockley, Peter G. .
NATURE REVIEWS MICROBIOLOGY, 2006, 4 (08) :588-596
[5]   A SMALL SEGMENT OF THE MAT-ALPHA-1 TRANSCRIPT PROMOTES MESSENGER-RNA DECAY IN SACCHAROMYCES-CEREVISIAE - A STIMULATORY ROLE FOR RARE CODONS [J].
CAPONIGRO, G ;
MUHLRAD, D ;
PARKER, R .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) :5141-5148
[6]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[7]   Foundations for engineering biology [J].
Endy, D .
NATURE, 2005, 438 (7067) :449-453
[8]   TIGHT CONTROL OF GENE-EXPRESSION IN MAMMALIAN-CELLS BY TETRACYCLINE-RESPONSIVE PROMOTERS [J].
GOSSEN, M ;
BUJARD, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (12) :5547-5551
[9]   Tetracycline-aptamer-mediated translational regulation in yeast [J].
Hanson, S ;
Berthelot, K ;
Fink, B ;
McCarthy, JEG ;
Suess, B .
MOLECULAR MICROBIOLOGY, 2003, 49 (06) :1627-1637
[10]   Biochemistry - Adaptive recognition by nucleic acid aptamers [J].
Hermann, T ;
Patel, DJ .
SCIENCE, 2000, 287 (5454) :820-825