On integral bases in relative quadratic extensions

被引:3
作者
Daberkow, M
Pohst, M
机构
[1] Technische Universität Berlin, Fachbereich 3, Sekr. Ma8-1, 10623 Berlin
关键词
D O I
10.1090/S0025-5718-96-00686-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be an algebraic number field and epsilon a quadratic extension with epsilon = F(root mu). We describe a minimal set of elements for generating the integral elements o(epsilon) of epsilon as an o(F) module. A consequence of this theoretical result is an algorithm for constructing such a set. The construction yields a simple procedure for computing an integral basis of epsilon as well. In the last section, we present examples of relative integral bases which were computed with the new algorithm and also give some running times.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 11 条
[1]  
ARTIN E, 1965, QUESTIONS BASE MINIM, P229
[2]  
Cassels J., 1986, LOCAL FIELDS
[3]  
FINCKE U, 1983, LECT NOTES COMPUT SC, V162, P194
[4]  
FROHLICH A, 1960, MATH Z, V74, P18
[5]  
HASSE H, 1926, JAHRESBER DTSCH MATH, V35
[6]  
HCKE E, 1981, LECTURES THEORY ALGE
[7]  
HILBERT D, 1898, MATH ANN, V51
[8]  
Narkiewicz W., 1990, Elementary and analytic theory of algebraic numbers, Vsecond
[9]  
Sommer Julius, 1907, VORLESUNGEN ZAHLENTH
[10]  
ZASSENHAUS H, 1967, ALGORITHMUS BERECHNU, P90