Kinetic theory and large-N limit for wave-particle self-consistent interaction

被引:11
作者
Elskens, Y
Firpo, MC
机构
[1] Univ Provence, Ctr St Jerome, CNRS, UMR 6633,Equipe Turbulence Plasma, F-13397 Marseille 20, France
[2] IMT Chateau Gombert, F-13451 Marseille, France
来源
PHYSICA SCRIPTA | 1998年 / T75卷
关键词
D O I
10.1238/Physica.Topical.075a00169
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A system of N particles xi(N) = (x(1), v(1), x(N), v(N)) interacting self-consistently with M waves Z = (A(j)e(-10j)) is considered in d-dimensional space. Given initial data [Z(0), xi(N)(0)], it evolves according to Hamiltonian dynamics to [Z(N)(t), xi(N)(t)]. Assuming that the particles interact only with the waves and conversely, in a mean-held way, we obtain an upper bound for the largest Liapunov exponent which depends on the total energy per particle but not on N. In the limit N --> infinity, this dynamics generates a Vlasov-like kinetic system for distribution functions f(t) = [f(sigma)(x, v, t)] for all species sigma, coupled to envelope equations for Z(j). Initial data [Z(0), f(0)] evolve to [Z(t), f(t)]. The solution (Z, f) exists and is unique for any initial data with finite energy. Moreover, for any time T > 0, the kinetic limit N --> infinity commutes with time evolution for all times 0 less than or equal to t less than or equal to T.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 20 条
[1]  
ANTONI M, 1998, IN PRESS PHYS PLASMA, V5
[2]  
ANTONI M, 1996, DYNAMICS TRANSPORT P, P1
[3]   VLASOV DYNAMICS AND ITS FLUCTUATIONS IN 1-N LIMIT OF INTERACTING CLASSICAL PARTICLES [J].
BRAUN, W ;
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 56 (02) :101-113
[4]   Nonlinear Landau damping [J].
Brodin, G .
PHYSICAL REVIEW LETTERS, 1997, 78 (07) :1263-1266
[5]   AN EXPLICIT SYMPLECTIC INTEGRATION SCHEME FOR PLASMA SIMULATIONS [J].
CARY, JR ;
DOXAS, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (01) :98-104
[6]   ENHANCEMENT OF THE VELOCITY DIFFUSION IN LONGITUDINAL PLASMA TURBULENCE [J].
CARY, JR ;
DOXAS, I ;
ESCANDE, DF ;
VERGA, AD .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :2062-2069
[7]  
Dobrushin R. L., 1989, ENCYCL MATH SCI, VII, P207
[8]  
Dobrushin R. L., 1979, FUNCT ANAL APPL, V13, P115
[9]   Numerical observation of turbulence enhanced growth rates [J].
Doxas, I ;
Cary, JR .
PHYSICS OF PLASMAS, 1997, 4 (07) :2508-2518
[10]   Intuitive and rigorous derivation of spontaneous emission and Landau damping of Langmuir waves through classical mechanics [J].
Escande, DF ;
Zekri, S ;
Elskens, Y .
PHYSICS OF PLASMAS, 1996, 3 (10) :3534-3539