Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis

被引:33
作者
Cheng, C
Prince, LS
Snyder, PM
Welsh, MJ
机构
[1] Univ Iowa, Coll Med, Howard Hughes Med Inst, Iowa City, IA 52242 USA
[2] Univ Iowa, Coll Med, Program Mol Biol, Iowa City, IA 52242 USA
[3] Univ Iowa, Coll Med, Dept Internal Med Physiol & Biophys, Iowa City, IA 52242 USA
[4] Univ Iowa, Coll Med, Dept Pediat, Iowa City, IA 52242 USA
关键词
D O I
10.1074/jbc.273.35.22693
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Naf channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S, In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the cu subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the Lu subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the ct subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.
引用
收藏
页码:22693 / 22700
页数:8
相关论文
共 24 条
[1]   Interactions between subunits of the human epithelial sodium channel [J].
Adams, CM ;
Snyder, PM ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (43) :27295-27300
[2]  
BENOS DJ, 1995, J MEMBRANE BIOL, V143, P1
[3]   LIVING WITH CLATHRIN - ITS ROLE IN INTRACELLULAR MEMBRANE TRAFFIC [J].
BRODSKY, FM .
SCIENCE, 1988, 242 (4884) :1396-1402
[4]   AMILORIDE-SENSITIVE EPITHELIAL NA+ CHANNEL IS MADE OF 3 HOMOLOGOUS SUBUNITS [J].
CANESSA, CM ;
SCHILD, L ;
BUELL, G ;
THORENS, B ;
GAUTSCHI, I ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1994, 367 (6462) :463-467
[5]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[6]   THE IDENTIFICATION AND SUPPRESSION OF INHERITED NEURODEGENERATION IN CAENORHABDITIS-ELEGANS [J].
CHALFIE, M ;
WOLINSKY, E .
NATURE, 1990, 345 (6274) :410-416
[7]   Mechanosensation and the DEG/ENaC ion channels [J].
Corey, DP ;
GarciaAnoveros, J .
SCIENCE, 1996, 273 (5273) :323-324
[8]   The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer [J].
Coscoy, S ;
Lingueglia, E ;
Lazdunski, M ;
Barbry, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (14) :8317-8322
[9]   The heterotetrameric architecture of the epithelial sodium channel (ENaC) [J].
Firsov, D ;
Gautschi, I ;
Merillat, AM ;
Rossier, BC ;
Schild, L .
EMBO JOURNAL, 1998, 17 (02) :344-352
[10]   Epithelial sodium channels: Function, structure, and regulation [J].
Garty, H ;
Palmer, LG .
PHYSIOLOGICAL REVIEWS, 1997, 77 (02) :359-396