Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks

被引:99
作者
Kim, Edward [1 ]
Jensen, Zach [1 ]
van Grootel, Alexander [1 ]
Huang, Kevin [1 ]
Staib, Matthew [2 ,3 ]
Mysore, Sheshera [4 ]
Chang, Haw-Shiuan [4 ]
Strubell, Emma [4 ]
McCallum, Andrew [4 ]
Jegelka, Stefanie [2 ,3 ]
Olivetti, Elsa [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept EECS, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Univ Massachusetts, Coll Informat & Comp Sci, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
D O I
10.1021/acs.jcim.9b00995
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Leveraging new data sources is a key step in accelerating the pace of materials design and discovery. To complement the strides in synthesis planning driven by historical, experimental, and computed data, we present an automated, unsupervised method for connecting scientific literature to inorganic synthesis insights. Starting from the natural language text, we apply word embeddings from language models, which are fed into a named entity recognition model, upon which a conditional variational autoencoder is trained to generate syntheses for any inorganic materials of interest. We show the potential of this technique by predicting precursors for two perovskite materials, using only training data published over a decade prior to their first reported syntheses. We demonstrate that the model learns representations of materials corresponding to synthesis-related properties and that the model's behavior complements the existing thermodynamic knowledge. Finally, we apply the model to perform synthesizability screening for proposed novel perovskite compounds.
引用
收藏
页码:1194 / 1201
页数:8
相关论文
共 39 条
[1]  
[Anonymous], WORLD SCI NEWS
[2]  
Aykol M., 2019, NAT COMMUN, V10
[3]   Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory [J].
Balachandran, Prasanna V. ;
Emery, Antoine A. ;
Gubernatis, James E. ;
Lookman, Turab ;
Wolverton, Chris ;
Zunger, Alex .
PHYSICAL REVIEW MATERIALS, 2018, 2 (04)
[4]  
Bojanowski P., 2017, Trans. Assoc. Comput. Linguist., V5, P135, DOI [10.1162/tacla00051, DOI 10.1162/TACL_A_00051]
[5]  
Chung Junyoung, 2014, CoRR, P1
[6]   Prediction of Organic Reaction Outcomes Using Machine Learning [J].
Coley, Connor W. ;
Barzilay, Regina ;
Jaakkola, Tommi S. ;
Green, William H. ;
Jensen, Klays F. .
ACS CENTRAL SCIENCE, 2017, 3 (05) :434-443
[7]   Using Machine Learning To Predict Suitable Conditions for Organic Reactions [J].
Gao, Hanyu ;
Struble, Thomas J. ;
Coley, Connor W. ;
Wang, Yuran ;
Green, William H. ;
Jensen, Klavs F. .
ACS CENTRAL SCIENCE, 2018, 4 (11) :1465-1476
[8]   Performance and resource considerations of Li-ion battery electrode materials [J].
Ghadbeigi, Leila ;
Harada, Jaye K. ;
Lettiere, Bethany R. ;
Sparks, Taylor D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (06) :1640-1650
[9]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276
[10]   Reaxys [J].
Goodman, Jonathan .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (12) :2897-2898