The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction

被引:50
作者
Arnesano, F
Banci, L
Benvenuti, M
Bertini, I
Calderone, V
Mangani, S
Viezzoli, MS
机构
[1] Univ Florence, Magnet Resonance Ctr CERM, I-50019 Florence, Italy
[2] Univ Florence, Dept Chem, I-50019 Florence, Italy
[3] Univ Siena, Dept Chem, I-53100 Siena, Italy
关键词
D O I
10.1074/jbc.M304398200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CutA1 are a protein family present in bacteria, plants, and animals, including humans. Escherichia coli CutA1 is involved in copper tolerance, whereas mammalian proteins are implicated in the anchoring of acetylcholinesterase in neuronal cell membranes. The x-ray structures of CutA1 from E. coli and rat were determined. Both proteins are trimeric in the crystals and in solution through an inter-subunit beta-sheet formation. Each subunit consists of a ferredoxin-like (beta1alpha1beta2beta3alpha2beta4) fold with an additional strand (beta5), a C-terminal helix (alpha3), and an unusual extended beta-hairpin involving strands beta2 and beta3. The bacterial CutA1 is able to bind copper(II) in vitro through His(2)Cys coordination in a type II water-accessible site, whereas the rat protein precipitates in the presence of copper(II). The evolutionarily conserved trimeric assembly of CutA1 is reminiscent of the architecture of PII signal transduction proteins. This similarity suggests an intriguing role of CutA1 proteins in signal transduction through allosteric communications between subunits.
引用
收藏
页码:45999 / 46006
页数:8
相关论文
共 44 条
[1]   PII signal transduction proteins, pivotal players in microbial nitrogen control [J].
Arcondéguy, T ;
Jack, R ;
Merrick, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (01) :80-+
[2]   Metallochaperones and metal-transporting ATPases: A comparative analysis of sequences and structures [J].
Arnesano, F ;
Banci, L ;
Bertini, I ;
Ciofi-Baffoni, S ;
Molteni, E ;
Huffman, DL ;
O'Halloran, TV .
GENOME RESEARCH, 2002, 12 (02) :255-271
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   Structural genomics of proteins involved in copper homeostasis [J].
Banci, L ;
Rosato, A .
ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (03) :215-221
[5]   State-of-the-art analysis of whole X-ray absorption spectra [J].
Binsted, N ;
Hasnain, SS .
JOURNAL OF SYNCHROTRON RADIATION, 1996, 3 :185-196
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]   Metals and neuroscience [J].
Bush, AI .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2000, 4 (02) :184-191
[8]   X-ray structure of the signal transduction protein P-II from Escherichia coli at 1.9 angstrom [J].
Carr, PD ;
Cheah, E ;
Suffolk, PM ;
Vasudevan, SG ;
Dixon, NE ;
Ollis, DL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :93-104
[9]   STRUCTURE OF THE ESCHERICHIA-COLI SIGNAL-TRANSDUCING PROTEIN P-II [J].
CHEAH, E ;
CARR, PD ;
SUFFOLK, PM ;
VASUDEVAN, SG ;
DIXON, NE ;
OLLIS, DL .
STRUCTURE, 1994, 2 (10) :981-990
[10]   Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB [J].
Coutts, G ;
Thomas, G ;
Blakey, D ;
Merrick, M .
EMBO JOURNAL, 2002, 21 (04) :536-545