Using principal component analysis for neural network high-dimensional potential energy surface

被引:13
作者
Casier, Bastien [1 ]
Carniato, Stephane [1 ]
Miteva, Tsveta [1 ]
Capron, Nathalie [1 ]
Sisourat, Nicolas [1 ]
机构
[1] Sorbonne Univ, CNRS, UMR 7614, Lab Chim Phys Matiere & Rayonnement, F-75005 Paris, France
关键词
INITIO MOLECULAR-DYNAMICS; KETO-ENOL-TAUTOMERISM;
D O I
10.1063/5.0009264
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potential energy surfaces (PESs) play a central role in our understanding of chemical reactions. Despite the impressive development of efficient electronic structure methods and codes, such computations still remain a difficult task for the majority of relevant systems. In this context, artificial neural networks (NNs) are promising candidates to construct the PES for a wide range of systems. However, the choice of suitable molecular descriptors remains a bottleneck for these algorithms. In this work, we show that a principal component analysis (PCA) is a powerful tool to prepare an optimal set of descriptors and to build an efficient NN: this protocol leads to a substantial improvement of the NNs in learning and predicting a PES. Furthermore, the PCA provides a means to reduce the size of the input space (i.e., number of descriptors) without losing accuracy. As an example, we applied this novel approach to the computation of the high-dimensional PES describing the keto-enol tautomerism reaction occurring in the acetone molecule.
引用
收藏
页数:9
相关论文
共 38 条
[11]   UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY [J].
CAR, R ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (22) :2471-2474
[12]   Keto-enol tautomerism in micro-hydrated acetylacetone: an atoms-in-molecules study [J].
Casier, Bastien ;
Sisourat, Nicolas ;
Carniato, Stephane ;
Capron, Nathalie .
THEORETICAL CHEMISTRY ACCOUNTS, 2018, 137 (07)
[13]   Ab initio molecular dynamics study of the keto-enol tautomerism of acetone in solution [J].
Cucinotta, Clotilde S. ;
Ruini, Alice ;
Catellani, Alessandra ;
Stirling, Andras .
CHEMPHYSCHEM, 2006, 7 (06) :1229-1234
[14]   Potential Energy Surfaces Fitted by Artificial Neural Networks [J].
Handley, Chris M. ;
Popelier, Paul L. A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (10) :3371-3383
[15]   Low dimensional representations along intrinsic reaction coordinates and molecular dynamics trajectories using interatomic distance matrices [J].
Hare, Stephanie ;
Bratholm, Lars ;
Glowacki, David ;
Carpenter, Barry .
CHEMICAL SCIENCE, 2019, 10 (43) :9954-9968
[16]   How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry [J].
Hase, Florian ;
Galvan, Ignacio Fdez. ;
Aspuru-Guzik, Alan ;
Lindh, Roland ;
Vacher, Morgane .
CHEMICAL SCIENCE, 2019, 10 (08) :2298-2307
[17]   Machine learning exciton dynamics [J].
Hase, Florian ;
Valleau, Stephanie ;
Pyzer-Knapp, Edward ;
Aspuru-Guzik, Alan .
CHEMICAL SCIENCE, 2016, 7 (08) :5139-5147
[18]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[19]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[20]  
Johnson S. G., NLOPT NONLINEAR OPTI