Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties

被引:402
作者
Jood, Priyanka [1 ,4 ]
Mehta, Rutvik J. [1 ,3 ]
Zhang, Yanliang [2 ]
Peleckis, Germanas [4 ]
Wang, Xiaolin [4 ]
Siegel, Richard W. [1 ,3 ]
Borca-Tasciuc, Theo [2 ,3 ]
Dou, Shi Xue [4 ]
Ramanath, Ganpati [1 ,3 ]
机构
[1] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA
[4] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2519, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Zinc oxide; nanostructured thermoelectrics; aluminum doping; microwave synthesis; heat-harvesting; high figure of merit; ZNO;
D O I
10.1021/nl202439h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ZnO is a promising high figure-of-merit (ZT) thermoelectric material for power harvesting from heat due to its high melting point, high electrical conductivity sigma, and Seebeck coefficient alpha, but its practical use is limited by a high lattice thermal conductivity kappa(L). Here, we report Al-containing ZnO nanocomposites with up to a factor of 20 lower kappa(L) than non-nanostructured ZnO, while retaining bulklike alpha and sigma. We show that enhanced phonon scattering promoted by Al-induced grain refinement and ZnAl2O4 nanoprecipitates presages ultralow kappa similar to 2 Wm(-1) K-1 at 1000 K The high a alpha similar to -300 mu VK-1 and high alpha similar to 1-10(4) Omega(-1) m(-1) result from an offsetting of the nanostructuring-induced mobility decrease by high, and nondegenerate, carrier concentrations obtained via excitation from shallow Al donor states. The resultant ZT similar to 0.44 at 1000 K is 50% higher than that for the best non-nanostructured counterpart material at the same temperature and holds promise for engineering advanced oxide-based high-ZT thermoelectrics for applications.
引用
收藏
页码:4337 / 4342
页数:6
相关论文
共 28 条
[1]   Solvothermal synthesis of ZnO with various aspect ratios using organic solvents [J].
Ayudhya, Sirachaya Kunjara Na ;
Tonto, Parawee ;
Mekasuwandumrong, Okorn ;
Pavarajarn, Varong ;
Praserthdam, Piyasan .
CRYSTAL GROWTH & DESIGN, 2006, 6 (11) :2446-2450
[2]   Kinetic and Thermodynamic Aspects in the Microwave-Assisted Synthesis of ZnO Nanoparticles in Benzyl Alcohol [J].
Bilecka, Idalia ;
Elser, Pierre ;
Niederberger, Markus .
ACS NANO, 2009, 3 (02) :467-477
[3]   Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn [J].
Cho, SL ;
Ma, J ;
Kim, YK ;
Sun, Y ;
Wong, GKL ;
Ketterson, JB .
APPLIED PHYSICS LETTERS, 1999, 75 (18) :2761-2763
[4]   Nanorods of ZnO made by flame spray pyrolysis [J].
Height, MJ ;
Mädler, L ;
Pratsinis, SE ;
Krumeich, F .
CHEMISTRY OF MATERIALS, 2006, 18 (02) :572-578
[5]   Thermopower enhancement in lead telluride nanostructures [J].
Heremans, JP ;
Thrush, CM ;
Morelli, DT .
PHYSICAL REVIEW B, 2004, 70 (11) :115334-1
[6]   Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique [J].
Jimenez-Gonzalez, AE ;
Urueta, JAS ;
Suarez-Parra, R .
JOURNAL OF CRYSTAL GROWTH, 1998, 192 (3-4) :430-438
[7]   Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices [J].
Kim, H ;
Piqué, A ;
Horwitz, JS ;
Murata, H ;
Kafafi, ZH ;
Gilmore, CM ;
Chrisey, DB .
THIN SOLID FILMS, 2000, 377 (377-378) :798-802
[8]   Large and abrupt optical band gap variation in In-doped ZnO [J].
Kim, KJ ;
Park, YR .
APPLIED PHYSICS LETTERS, 2001, 78 (04) :475-477
[9]   Enhanced boundary-scattering of electrons and phonons in nanograined zinc oxide [J].
Kinemuchi, Yoshiaki ;
Nakano, Hiromi ;
Mikami, Masashi ;
Kobayashi, Keizo ;
Watari, Koji ;
Hotta, Yuji .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (05)
[10]   First-principles study of native point defects in ZnO [J].
Kohan, AF ;
Ceder, G ;
Morgan, D ;
Van de Walle, CG .
PHYSICAL REVIEW B, 2000, 61 (22) :15019-15027