Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice

被引:248
作者
Izawa, Takeshi [1 ]
机构
[1] Natl Inst Agrobiol Sci, Tsukuba, Ibaraki 3058602, Japan
关键词
Arabidopsis thaliana; Ehd1; Hd1; photoperiodic flowering; rice; vernalization;
D O I
10.1093/jxb/erm159
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The adaptation of plants to natural environments depends on the adaptation of flowering-time control at the appropriate season to set seeds. Possible molecular mechanisms underlying this adaptation have recently been revealed. In Arabidopsis thaliana, a model long-day plant, control of. oral transition by vernalization and long-day. oral promotion pathways is a key regulator in adaptation to different regions. A floral repressor termed FLC and a floral promoter termed CONSTANS (CO), which control FT, a florigen gene, are key transcriptional regulators of these pathways. Recent analyses of haplotypes in accessions of A. thaliana revealed that FLC regulation by an activator termed FRIGIDA (FRI) had been a target for natural selection. By contrast, in rice (Oryza sativa), a model shortday plant, two independent floral pathways - Heading date 1 (Hd1, a CO orthologue)-dependent and Early heading date 1 (Ehd1)-dependent pathways - control Hd3a (an FT orthologue) and flowering time. Interestingly, there is an antagonistic action between Hd1 and Ehd1 in the control of flowering time under long-day conditions, because Hd1 represses floral transition whereas Ehd1 promotes it. A wild rice species, Oryza rufipogon, has common ancestry with cultivated rice and grows wild in the tropics, yet cultivated rice is grown even in the cold regions of northern latitudes. During domestication, the adaptation of O. sativa to northern regions by artificial selection may have become possible through interactions of the two pathways. These suggest that the domestication process of rice will provide novel insights into the adaptation of plants in evolution.
引用
收藏
页码:3091 / 3097
页数:7
相关论文
共 55 条
[1]   From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development [J].
Alonso-Blanco, C ;
Mendez-Vigo, B ;
Koornneef, M .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2005, 49 (5-6) :717-732
[2]   The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana [J].
Balasubramanian, Sureshkumar ;
Sureshkumar, Sridevi ;
Agrawal, Mitesh ;
Michael, Todd P. ;
Wessinger, Carrie ;
Maloof, Julin N. ;
Clark, Richard ;
Warthmann, Norman ;
Chory, Joanne ;
Weigel, Detlef .
NATURE GENETICS, 2006, 38 (06) :711-715
[3]   Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait [J].
Caicedo, AL ;
Stinchcombe, JR ;
Olsen, KM ;
Schmitt, J ;
Purugganan, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15670-15675
[4]   Ancient paddy soils from the Neolithic age in China's Yangtze River Delta [J].
Cao, Z. H. ;
Ding, J. L. ;
Hu, Z. Y. ;
Knicker, H. ;
Koegel-Knabner, I. ;
Yang, L. Z. ;
Yin, R. ;
Lin, X. G. ;
Dong, Y. H. .
NATURWISSENSCHAFTEN, 2006, 93 (05) :232-236
[5]   Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity [J].
Cockram, James ;
Jones, Huw ;
Leigh, Fiona J. ;
O'Sullivan, Donal ;
Powell, Wayne ;
Laurie, David A. ;
Greenland, Andrew J. .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (06) :1231-1244
[6]   FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J].
Corbesier, Laurent ;
Vincent, Coral ;
Jang, Seonghoe ;
Fornara, Fabio ;
Fan, Qingzhi ;
Searle, Iain ;
Giakountis, Antonis ;
Farrona, Sara ;
Gissot, Lionel ;
Turnbull, Colin ;
Coupland, George .
SCIENCE, 2007, 316 (5827) :1030-1033
[7]  
Darwin C., 1868, VARIATION PLANTS ANI, DOI DOI 10.1017/CBO9780511709500
[8]   The molecular genetics of crop domestication [J].
Doebley, John F. ;
Gaut, Brandon S. ;
Smith, Bruce D. .
CELL, 2006, 127 (07) :1309-1321
[9]   Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1l [J].
Doi, K ;
Izawa, T ;
Fuse, T ;
Yamanouchi, U ;
Kubo, T ;
Shimatani, Z ;
Yano, M ;
Yoshimura, A .
GENES & DEVELOPMENT, 2004, 18 (08) :926-936
[10]   Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar 'Kasalath' in a genetic background of japonica elite cultivar 'Koshihikari' [J].
Ebitani, T ;
Takeuchi, Y ;
Nonoue, Y ;
Yamamoto, T ;
Takeuchi, K ;
Yano, M .
BREEDING SCIENCE, 2005, 55 (01) :65-73