In Saccharomyces cerevisiae, three G(1) cyclins (Clns) are important for Start, the event committing cells to division. Sic1, an inhibitor of Clb-Cdc28 kinases, became phosphorylated at Start, and this phosphorylation depended on the activity of Clns. Sic1 was subsequently lost, which depended on the activity of Clns and the ubiquitin-conjugating enzyme Cdc34. Inactivation of Sic1 was the only nonredundant essential function of Clns, because a sic1 deletion rescued the inviability of the cln1 cln2 cln3 triple mutant. In sic1 mutants, DNA replication became uncoupled from budding. Thus, Sic1 may be a substrate of Cln-Cdc28 complexes, and phosphorylation and proteolysis of Sic1 may regulate commitment to replication at Start.