Chiral esters with high optical purity have been synthesized at 298.2 K from racemic 2-octanol and alkanoic acids using the commercial lipases from Chromobacterium viscosum (CV) or Candida sp. (SP 525) immobilized in microemulsion-based gelatin gels. The microemulsions consisted of water and alkanes stabilized by the anionic surfactant sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT) and the naturally occurring zwitterionic surfactant soybean lecithin, respectively. The enzymes were solubilized both in water-in-oil (W/O) microemulsions and in microemulsions with a bicontinuous structure. Different microstructures of the gels were chosen since the enzyme may undergo conformational changes in different environments resulting in different catalytic efficiencies toward competing substrates. Therefore, it is of great fundamental interest to know the phase behaviour and the microstructures of the used microemulsion systems. Phase diagrams were determined at 298.2 K for the systems water-hexane-AOT and ethanol/water (1:1)-hexadecane-soybean lecithin. The former system exhibited a large one-phase W/O microemulsion region, while in the latter a small one-phase region with bicontinuous structure was present. The kinetic enantiomeric ratios (E-values), as determined from enantiomeric excess (e.e.) values at a conversion below 0.5, were higher both in the W/O microemulsion as well as in the bicontinuous microemulsion using the SP 525 lipase, than using the CV lipase. On the other hand, the conversions were higher using gels based on W/O microemulsions (AOT stabilized) than using gels based on microemulsions with a bicontinuous structure (lecithin stabilized).