Atomic and molecular decompositions of anisotropic Besov spaces

被引:100
作者
Bownik, M [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
D O I
10.1007/s00209-005-0765-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we develop the theory of weighted anisotropic Besov spaces associated with general expansive matrix dilations and doubling measures with the use of discrete wavelet transforms. This study extends the isotropic Littlewood- Paley methods of dyadic phi-transforms of Frazier and Jawerth [19, 21] to non-isotropic settings. Several results of isotropic theory of Besov spaces are recovered for weighted anisotropic Besov spaces. We show that these spaces are characterized by the magnitude of the phi-transforms in appropriate sequence spaces. We also prove boundedness of an anisotropic analogue of the class of almost diagonal operators and we obtain atomic and molecular decompositions of weighted anisotropic Besov spaces, thus extending isotropic results of Frazier and Jawerth [21].
引用
收藏
页码:539 / 571
页数:33
相关论文
共 39 条
[1]  
Besov O.V., 1979, INTEGRAL REPRESENTAT, VI
[2]  
Besov O.V., 1979, INTEGRAL REPRESENTAT, VII
[3]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[4]   A characterization of affine dual frames in L2 (Rn) [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :203-221
[5]  
BOWNIK M, IN PRESS T AM MATH S
[6]   Singular measures and the key of G [J].
Buckley, SM ;
MacManus, P .
PUBLICACIONS MATEMATIQUES, 2000, 44 (02) :483-489
[7]  
Bui H.Q., 1982, Hiroshima Math. J., V12, P581
[8]  
BUI HQ, 1994, MATH NACHR, V170, P25
[9]   Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces the case q<1 [J].
Bui, HQ ;
Paluszynski, M ;
Taibleson, M .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :837-846
[10]  
Bui HQ, 1996, STUD MATH, V119, P219