A novel population initialization method for accelerating evolutionary algorithms

被引:233
作者
Rahnamayan, Shahryar [1 ]
Tizhoosh, Hamid R. [1 ]
Salama, Magdy M. A. [1 ]
机构
[1] Univ Waterloo, Fac Engn, Med Instrument Anal & Machine Intelligence Res Gr, Waterloo, ON N2L 3G1, Canada
关键词
evolutionary algorithms; global optimization; random initialization; differential evolution (DE); opposition-based learning;
D O I
10.1016/j.camwa.2006.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Population initialization is a crucial task in evolutionary algorithms because it can affect the convergence speed and also the quality of the final solution. If no information about the solution is available, then random initialization is the most commonly used method to generate candidate solutions (initial population). This paper proposes a novel initialization approach which employs opposition-based learning to generate initial population. The conducted experiments over a comprehensive set of benchmark functions demonstrate that replacing the random initialization with the opposition-based population initialization can accelerate convergence speed. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1605 / 1614
页数:10
相关论文
共 26 条
[1]   A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems [J].
Ali, MM ;
Khompatraporn, C ;
Zabinsky, ZB .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (04) :635-672
[2]  
Andre J, 2000, ADV ENG SOFTW, V32, P49
[3]  
Back T., 1997, IEEE Transactions on Evolutionary Computation, V1, P3, DOI 10.1109/4235.585888
[4]  
Back T., 1996, EVOLUTIONARY ALGORIT
[5]  
Bratley P., 1992, ACM Transactions on Modeling and Computer Simulation, V2, P195, DOI 10.1145/146382.146385
[6]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[7]  
Das S, 2005, IEEE C EVOL COMPUTAT, P1691
[8]   A trigonometric mutation operation to differential evolution [J].
Fan, HY ;
Lampinen, J .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 27 (01) :105-129
[9]  
Goldberg D.E, 1989, GENETIC ALGORITHMS S
[10]   Simple explanation of the no-free-lunch theorem and its implications [J].
Ho, YC ;
Pepyne, DL .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 115 (03) :549-570