A note on penalized minimum distance estimation in nonparametric regression

被引:2
作者
Bunea, F [1 ]
Wegkamp, MH [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2003年 / 31卷 / 03期
关键词
complexity penalty; L-1-risk; minimum distance estimators; model selection; non-parametric regression; shatter coefficient;
D O I
10.2307/3316086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors introduce a penalized minimum distance regression estimator. They show the estimator to balance, among a sequence of nested models of increasing complexity, the L-1-approximation error of each model class and a penalty term which reflects the richness of each model and serves as a upper bound for the estimation error.
引用
收藏
页码:267 / 274
页数:8
相关论文
共 12 条
[1]  
Anthony M., 1999, Neural network learning: theoretical foundations, Vfirst
[2]  
BIAU G, 2002, UNPUB NOTE DENSITY
[3]  
BIAU G, 2002, UNPUB DENSITY ESTIMA
[4]  
Devroye L, 1996, ANN STAT, V24, P2499
[5]  
Devroye L, 1997, ANN STAT, V25, P2626
[6]  
DEVROYE L, 2000, COMBINATORIAL METHOD
[7]  
Devroye L., 1996, A probabilistic theory of pattern recognition
[8]  
Gyorfi L., 2002, A Distribution-Free Theory of Nonparametric Regression, V1
[9]   Estimation and selection procedures in regression:: an L1 approach [J].
Hengartner, N ;
Wegkamp, M .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (04) :621-632
[10]  
Nicoleris T, 1997, ANN STAT, V25, P2493