The representation and approximation for Drazin inverse

被引:35
作者
Wei, YM [1 ]
Wu, HB
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
index; drazin inverse; representation; approximation;
D O I
10.1016/S0377-0427(99)00369-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a unified representation theorem for Drazin inverse. Specific expression and computational procedures for Drazin inverse can be uniformly derived. Numerical examples are tested and the application to the singular linear equations is also considered. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 15A09; 65F20.
引用
收藏
页码:417 / 432
页数:16
相关论文
共 23 条
[1]  
Campbell S.L., 1991, Generalized Inverses of Linear Transformations
[2]   A semi-iterative method for real spectrum singular linear systems with an arbitrary index [J].
Climent, JJ ;
Neumann, M ;
Sidi, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) :21-38
[3]   COMPUTING STABLE EIGENDECOMPOSITIONS OF MATRICES [J].
DEMMEL, JW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 79 :163-193
[4]  
Drazin MP., 1958, Amer. Math. Monthly, V65, P506, DOI [10.1080/00029890.1958.11991949, DOI 10.2307/2308576.416]
[5]   ON THE SOLUTION OF SINGULAR LINEAR-SYSTEMS OF ALGEBRAIC EQUATIONS BY SEMIITERATIVE METHODS [J].
EIERMANN, M ;
MAREK, I ;
NIETHAMMER, W .
NUMERISCHE MATHEMATIK, 1988, 53 (03) :265-283
[6]   ILL-CONDITIONED EIGEN-SYSTEMS AND COMPUTATION OF JORDAN CANONICAL FORM [J].
GOLUB, GH ;
WILKINSON, JH .
SIAM REVIEW, 1976, 18 (04) :578-619
[7]  
GROETSCH CW, 1982, RECENT APPL GEN INVE, P220
[8]  
HARTWIG RE, 1981, CRYPTOLOGIA, V5, P67
[9]   AN ALGORITHM FOR NUMERICAL COMPUTATION OF THE JORDAN NORMAL-FORM OF A COMPLEX MATRIX [J].
KAGSTROM, B ;
RUHE, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (03) :398-419
[10]   Determining the structure of the Jordan normal form of a matrix by symbolic computation [J].
Li, TY ;
Zhang, ZN ;
Wang, TJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 252 :221-259