Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice

被引:72
作者
Wen, N [1 ]
Chu, Z [1 ]
Wang, S [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Crop Mol Breeding, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
关键词
defense-related genes; resistance QTL; mapping; disease resistance; rice;
D O I
10.1007/s00438-003-0839-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial blight and fungal blast diseases of rice, caused by Xanthomonas oryzae pv. oryzae and Pyricularia grisea Sacc., respectively, are two of the most devastating diseases in rice worldwide. To study the defense responses to infection with each of these pathogens, expression profiling of 12 defense-responsive genes was performed using near-isogenic rice lines that are resistant or susceptible to bacterial blight and fungal blast, respectively, and rice cultivars that are resistant or susceptible to both pathogens. All 12 genes showed constitutive expression, but expression levels increased in response to infection. Based on their expression patterns in 12 host-pathogen combinations, these genes could be classified into three types, pathogen non-specific (6), pathogen specific but race non-specific (4) and race specific (2). Most of the 12 genes were only responsive during incompatible interactions. These results suggest that bacterial blight and fungal blast resistances share common pathway(s), but are also regulated by different defense pathways in rice. Activation of the corresponding R gene is the key step that initiates the action of these genes in defense responses. The chromosomal locations and pathogen specificities of seven of the 12 genes were consistent with those of previously identified quantitative trait loci for rice disease resistance, which indicates that some of the 12 genes studied may have a phenotypic impact on disease resistance in rice.
引用
收藏
页码:331 / 339
页数:9
相关论文
共 41 条
[1]   Genetic basis and mapping of the resistance to rice yellow mottle virus.: I.: QTLs identification and relationship between resistance and plant morphology [J].
Albar, L ;
Lorieux, M ;
Ahmadi, N ;
Rimbault, I ;
Pinel, A ;
Sy, AA ;
Fargette, D ;
Ghesquière, A .
THEORETICAL AND APPLIED GENETICS, 1998, 97 (07) :1145-1154
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Regulatory role of SGT1 in early R gene-mediated plant defenses [J].
Austin, MJ ;
Muskett, P ;
Kahn, K ;
Feys, BJ ;
Jones, JDG ;
Parker, JE .
SCIENCE, 2002, 295 (5562) :2077-2080
[4]   The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].
Azevedo, C ;
Sadanandom, A ;
Kitagawa, K ;
Freialdenhoven, A ;
Shirasu, K ;
Schulze-Lefert, P .
SCIENCE, 2002, 295 (5562) :2073-2076
[5]   Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley [J].
Chen, H ;
Wang, SP ;
Xing, YZ ;
Xu, CG ;
Hayes, PM ;
Zhang, QF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2544-2549
[6]  
CHEN H, 2001, THESIS HUAZHONG AGR
[7]   Pathotypes of Pyricularia grisea in rice fields of central and southern China [J].
Chen, HL ;
Chen, BT ;
Zhang, DP ;
Xie, YF ;
Zhang, QF .
PLANT DISEASE, 2001, 85 (08) :843-850
[8]   Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis [J].
Chern, MS ;
Fitzgerald, HA ;
Yadav, RC ;
Canlas, PE ;
Dong, XN ;
Ronald, PC .
PLANT JOURNAL, 2001, 27 (02) :101-113
[9]   Genetic dissection of systemic acquired resistance [J].
Dong, XN .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (04) :309-314
[10]   Induction of tcI 7, a gene encoding a β-subunit of proteasome, in tobacco plants treated with elicitins, salicylic acid or hydrogen peroxide [J].
Etienne, P ;
Petitot, AS ;
Houot, V ;
Blein, JP ;
Suty, L .
FEBS LETTERS, 2000, 466 (2-3) :213-218