Anomalous roughness of turbulent interfaces with system size dependent local roughness exponent

被引:6
作者
Balankin, AS [1 ]
Matamoros, DM
机构
[1] Inst Politecn Nacl, SEPI, ESIME, Mexico City 07738, DF, Mexico
[2] Inst Mexicano Petr, Mexico City 07730, DF, Mexico
关键词
roughness; scaling; far from equilibrium systems;
D O I
10.1016/j.physleta.2005.02.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a system far from equilibrium the system size can play the role of control parameter that governs the spatiotemporal dynamics of the system. Accordingly, the kinetic roughness of interfaces in systems far from equilibrium may depend on the system size. To get an insight into this problem, we performed a detailed study of rough interfaces formed in paper combustion experiments. Using paper sheets of different width;, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non-universal global roughness exponent a and by the system size dependent spectrum of local roughness exponents, zeta(q) (lambda) = zeta(1) (1)q(-omega)lambda(phi) < alpha, whereas the burning fronts possess conventional multi-affine scaling characterized by the universal spectrum of roughness exponent zeta(q) = 0.93q(-0.15). The structure factor of turbulent flame fronts also exhibits unconventional scaling dependence on lambda. These results are expected to apply to a broad range of far from equilibrium systems when the kinetic energy fluctuations exceed a certain critical value. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 69 条
[1]   Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group [J].
Arad, I ;
L'vov, VS ;
Procaccia, I .
PHYSICAL REVIEW E, 1999, 59 (06) :6753-6765
[2]   Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors of passively advected magnetic fields [J].
Arad, I ;
Biferale, L ;
Procaccia, I .
PHYSICAL REVIEW E, 2000, 61 (03) :2654-2662
[3]   Disentangling scaling properties in anisotropic and inhomogeneous turbulence [J].
Arad, I ;
Biferale, L ;
Mazzitelli, I ;
Procaccia, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :5040-5043
[4]  
Asikainen J, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.052104
[5]   Growth of noninfinitesimal perturbations in turbulence [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1262-1265
[6]  
Bak P., 1996, NATURE WORKS SCI SEL
[7]   Physics of fracture and mechanics of self-affine cracks [J].
Balankin, AS .
ENGINEERING FRACTURE MECHANICS, 1997, 57 (2-3) :135-203
[8]   A new statistical distribution function for self-affine crack roughness parameters [J].
Balankin, AS ;
Susarrey, O .
PHILOSOPHICAL MAGAZINE LETTERS, 1999, 79 (08) :629-637
[9]   Crossover from antipersistent to persistent behavior in time series possessing the generalyzed dynamic scaling law -: art. no. 036121 [J].
Balankin, AS ;
Matamoros, OM ;
Gálvez, E ;
Pérez, A .
PHYSICAL REVIEW E, 2004, 69 (03) :036121-1
[10]   Scaling properties of pinned interfaces in fractal media -: art. no. 096101 [J].
Balankin, AS ;
Susarrey, O ;
Gonzáles, JM .
PHYSICAL REVIEW LETTERS, 2003, 90 (09) :4