Regulation of the Arabidopsis defense transcriptome

被引:337
作者
Eulgem, T [1 ]
机构
[1] Univ Calif Riverside, Dept Bot & Plant Sci, Ctr Plant Cell Biol, Riverside, CA 92521 USA
关键词
D O I
10.1016/j.tplants.2004.12.006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Transcriptional re-programming is a key step of plant defense in response to pathogen recognition. Microarray analyses combined with genetic and biochemical approaches are now enabling us to study basic principles and details of regulatory mechanisms controlling the defense transcriptome in Arabidopsis. Recent results show that signaling pathways used by different defense systems converge and target overlapping gene sets. Furthermore, a quantitative mechanism common to multiple defense systems modulates transcript levels of these defense-associated genes. Most importantly, some transcription factors have been proven to play a pivotal role in disease resistance. Regulatory circuits linking signaling and gene regulation are emerging, suggesting that a complex interplay of transcriptional activators and repressors fine-tunes expression of the defense transcriptome.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 94 条
[1]  
[Anonymous], 1997, Plant relationships, DOI [10.1007/978-3-662-10370-8_7, DOI 10.1007/978-3-662-10370-8_7]
[2]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[3]   Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein [J].
Buttner, M ;
Singh, KB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5961-5966
[4]   Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J].
Cao, H ;
Li, X ;
Dong, XN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6531-6536
[5]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[6]   The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements [J].
Chakravarthy, S ;
Tuori, RP ;
D'Ascenzo, MD ;
Fobert, PR ;
Després, C ;
Martin, GB .
PLANT CELL, 2003, 15 (12) :3033-3050
[7]   Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor [J].
Chen, CH ;
Chen, ZX .
PLANT PHYSIOLOGY, 2002, 129 (02) :706-716
[8]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[9]   Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley [J].
Cormack, RS ;
Eulgem, T ;
Rushton, PJ ;
Köchner, P ;
Hahlbrock, K ;
Somssich, IE .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2002, 1576 (1-2) :92-100
[10]   Regulation of gene expression by reactive oxygen [J].
Dalton, TD ;
Shertzer, HG ;
Puga, A .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :67-101