Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila

被引:126
作者
Varmark, Hanne
Liamazares, Salud
Rebollo, Elena
Lange, Bodo
Reina, Jose
Schwarz, Heinz
Gonzalez, Cayetano
机构
[1] IRB Barcelona, Cell Div Grp, Barcelona 08028, Spain
[2] European Mol Biol Lab, Cell Biol & Biophys Programme, D-69117 Heidelberg, Germany
[3] Max Planck Inst Mol Genet, Dept Vertebrate Genom, D-14195 Berlin, Germany
[4] Max Planck Inst Dev Biol, Electron Microscopy Unit, D-72076 Tubingen, Germany
[5] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
关键词
D O I
10.1016/j.cub.2007.09.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Centrosomes, the major organizers of the microtubule network in most animal cells, are composed of centrioles embedded in a web of pericentriolar material (PCM). Recruitment and stabilization of PCM on the centrosome is a centriole-dependent function. Compared to the considerable number of PCM proteins known, the molecular characterization of centrioles is still very limited. Only a few centriolar proteins have been identified so far in Drosophila, most related to centriole duplication. Results: We have cloned asterless (aso and found that it encodes a 120 kD highly coiled-coil protein that is a constitutive pancentriolar and basal body component. Loss of asl function impedes the stabilization/maintenance of PCM at the centrosome. In embryos deficient for Asl, development is arrested right after fertilization. Asl shares significant homology with Cep152, a protein described as a component of the human centrosome for which no functional data is yet available. Conclusions: The cloning of asl offers new insight into the molecular composition of Drosophila centrioles and a possible model for the role of its human homolog. In addition, the phenotype of asl-deficient flies reveals that a functional centrosome is required for Drosophila embryo development.
引用
收藏
页码:1735 / 1745
页数:11
相关论文
共 50 条
[1]   Proteomic characterization of the human centrosome by protein correlation profiling [J].
Andersen, JS ;
Wilkinson, CJ ;
Mayor, T ;
Mortensen, P ;
Nigg, EA ;
Mann, M .
NATURE, 2003, 426 (6966) :570-574
[2]   The centrosome in human genetic disease [J].
Badano, JL ;
Teslovich, TM ;
Katsanis, N .
NATURE REVIEWS GENETICS, 2005, 6 (03) :194-205
[3]   Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila [J].
Baker, JD ;
Adhikarakunnathu, S ;
Kernan, MJ .
DEVELOPMENT, 2004, 131 (14) :3411-3422
[4]   Drosophila dd4 mutants reveal that γTURC is required to maintain juxtaposed half spindles in spermatocytes [J].
Barbosa, V ;
Gatt, M ;
Rebollo, E ;
Gonzalez, C ;
Glover, DM .
JOURNAL OF CELL SCIENCE, 2003, 116 (05) :929-941
[5]   Flies without centrioles [J].
Basto, Renata ;
Lau, Joyce ;
Vinogradova, Tatiana ;
Gardiol, Alejandra ;
Woods, C. Geoffrey ;
Khodjakov, Alexey ;
Raff, Jordan W. .
CELL, 2006, 125 (07) :1375-1386
[6]   SAK/PLK4 is required for centriole duplication and flagella development [J].
Bettencourt-Dias, M ;
Rodrigues-Martins, A ;
Carpenter, L ;
Riparbelli, M ;
Lehmann, L ;
Gatt, MK ;
Carmo, N ;
Balloux, F ;
Callaini, G ;
Glover, DM .
CURRENT BIOLOGY, 2005, 15 (24) :2199-2207
[7]   Centrosome biogenesis and function: centrosomics brings new understanding [J].
Bettencourt-Dias, Monica ;
Glover, David M. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (06) :451-463
[8]   Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells [J].
Bobinnec, Y ;
Khodjakov, A ;
Mir, LM ;
Rieder, CL ;
Eddé, B ;
Bornens, M .
JOURNAL OF CELL BIOLOGY, 1998, 143 (06) :1575-1589
[9]   Spindle assembly in Drosophila neuroblasts and ganglion mother cells [J].
Bonaccorsi, S ;
Giansanti, MG ;
Gatti, M .
NATURE CELL BIOLOGY, 2000, 2 (01) :54-56
[10]   Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster [J].
Bonaccorsi, S ;
Giansanti, MG ;
Gatti, M .
JOURNAL OF CELL BIOLOGY, 1998, 142 (03) :751-761