Modelling and optimization of grinding processes

被引:57
作者
Brinksmeier, E
Tonshoff, HK
Czenkusch, C
Heinzel, C
机构
[1] Stiftung Inst Werkstofftech, Div Mfg Technol, D-28359 Bremen, Germany
[2] Univ Hannover, Inst Fertigungstech & Spanende Werkzeugmaschinen, D-30159 Hannover, Germany
关键词
grinding modelling; neural networks; fuzzy set theory; genetic algorithm; grinding information system;
D O I
10.1023/A:1008908724050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper describes different methods for modelling and optimization of grinding processes. First the process and product quality characterizing quantities have to be measured. Afterwards different model types, e.g. physical-empirical basic grinding models as well as empirical process models based on neural networks, fuzzy set theory and standard multiple regression methods, are discussed for an off-line process conceptualization and optimization using a genetic algorithm. The assessment of grinding process :results, which build the individuals in the genetic algorithm's population, is carried out using a target tree method. The methods presented are integrated into an existing grinding information system, which is part of a three control loop system for quality assurance.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 16 条
[1]  
BRINKSMEIER E, 1991, FORSCHITTBERICHTE 2, V234
[2]  
BRINKSMEIER E, 1984, ANN CIRP, V33, P489
[3]  
Goldberg D., 1989, GENETIC ALGORITHMS S
[4]  
HUSH DR, 1993, IEEE SIGNAL PROC JAN, P8
[5]  
KARPUSCHEWSKI B, 1996, 58 JB SCHLEIFEN HONE, P437
[6]  
KARPUSCHEWSKI B, 1995, THESIS U HANNOVER
[7]  
Pao Y. H., 1989, ADAPTIVE PATTERN REC
[8]  
Paul T., 1994, THESIS U HANNOVER
[9]  
SPUR G, 1990, P 6 INT BRAUNSCHW FE
[10]  
Tonshoff H.K., 1995, SPANEN GRUNDLAGEN