Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: A periodic electrostatic embedded cluster model study

被引:59
作者
Ammal, Salai Cheettu [1 ]
Heyden, Andreas [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
GAS SHIFT REACTION; INITIO MOLECULAR-DYNAMICS; ANATASE TIO2(101) SURFACE; TOTAL-ENERGY CALCULATIONS; FUEL-CELL APPLICATIONS; FAST MULTIPOLE METHOD; WAVE BASIS-SET; AB-INITIO; AU/TIO2; CATALYST; AU NANOPARTICLES;
D O I
10.1063/1.3497037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interaction of Au-n and Pt-n (n=2,3) clusters with the stoichiometric and partially reduced rutile TiO2 (110) surfaces has been investigated using periodic slab and periodic electrostatic embedded cluster models. Compared to Au clusters, Pt clusters interact strongly with both stoichiometric and reduced TiO2 (110) surfaces and are able to enhance the reducibility of the TiO2 (110) surface, i.e., reduce the oxygen vacancy formation energy. The focus of this study is the effect of Hartree-Fock exchange on the description of the strength of chemical bonds at the interface of Au/Pt clusters and the TiO2 (110) surface. Hartree-Fock exchange helps describing the changes in the electronic structures due to metal cluster adsorption as well as their effect on the reducibility of the TiO2 surface. Finally, the performance of periodic embedded cluster models has been assessed by calculating the Pt adsorption and oxygen vacancy formation energies. Cluster models, together with hybrid PBE0 functional, are able to efficiently compute reasonable electronic structures of the reduced TiO2 surface and predict charge localization at surface oxygen vacancies, in agreement with the experimental data, that significantly affect computed adsorption and reaction energies. (C) 2010 American Institute of Physics. [doi:10.1063/1.3497037]
引用
收藏
页数:15
相关论文
共 142 条
[1]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[2]   Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures [J].
Akita, T ;
Lu, P ;
Ichikawa, S ;
Tanaka, K ;
Haruta, M .
SURFACE AND INTERFACE ANALYSIS, 2001, 31 (02) :73-78
[3]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS [J].
ANDRAE, D ;
HAUSSERMANN, U ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
THEORETICA CHIMICA ACTA, 1990, 77 (02) :123-141
[4]  
Atkins P. W., 1978, Physical Chemistry
[5]   Bifunctional catalysts for single-stage water-gas shift reaction in fuel cell applications. Part 1. Effect of the support on the reaction sequence [J].
Azzam, K. G. ;
Babich, I. V. ;
Seshan, K. ;
Lefferts, L. .
JOURNAL OF CATALYSIS, 2007, 251 (01) :153-162
[6]   A bifunctional catalyst for the single-stage water-gas shift reaction in fuel cell applications. Part 2. Roles of the support and promoter on catalyst activity and stability [J].
Azzam, K. G. ;
Babich, I. V. ;
Seshan, K. ;
Lefferts, L. .
JOURNAL OF CATALYSIS, 2007, 251 (01) :163-171
[7]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[8]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[9]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[10]   Au/TiO2 nanostructured catalyst:: pressure and temperature effects on the FTIR spectra of CO adsorbed at 90 K [J].
Boccuzzi, F ;
Chiorino, A ;
Manzoli, M .
SURFACE SCIENCE, 2002, 502 :513-518