Optimizing quantum process tomography with unitary 2-designs

被引:85
作者
Scott, A. J. [1 ,2 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[2] Griffith Univ, Ctr Quantum Comp Technol, Brisbane, Qld 4111, Australia
关键词
D O I
10.1088/1751-8113/41/5/055308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that weighted unitary 2-designs define optimal measurements on the system-ancilla output state for ancilla-assisted process tomography of unital quantum channels. Examples include complete sets of mutually unbiased unitary-operator bases. Each of these specifies a minimal series of optimal orthogonal measurements. General quantum channels are also considered.
引用
收藏
页数:26
相关论文
共 63 条
[1]  
[Андреев Н.Н. Andreev N.N.], 2000, [Matematicheskie zametki, Математические заметки], V67, P489
[2]   A minimal design of order 11 on the 3-sphere [J].
Andreev, NN .
MATHEMATICAL NOTES, 2000, 67 (3-4) :417-424
[3]  
[Anonymous], 1998, ELECTRON J COMB
[4]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[5]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[6]   TIGHT SPHERICAL DESIGNS .1. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (01) :199-207
[7]   TIGHT SPHERICAL DESIGNS, .2. [J].
BANNAI, E ;
DAMERELL, RM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (FEB) :13-30
[8]  
Bannai E., 2005, ALGEBRA ANALIZ, V16, P609
[9]  
BLUMEKOHOUT R, QUANTPH0611080
[10]   Uniqueness of the 120-point spherical 11-design in four dimensions [J].
Boyvalenkov, P ;
Danev, D .
ARCHIV DER MATHEMATIK, 2001, 77 (04) :360-368