Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny

被引:120
作者
Mendes, SC [1 ]
Robin, C [1 ]
Dzierzak, E [1 ]
机构
[1] Erasmus Univ, Ctr Med, Dept Cell Biol & Genet, NL-3000 DR Rotterdam, Netherlands
来源
DEVELOPMENT | 2005年 / 132卷 / 05期
关键词
mesenchyme; hematopoiesis; AGM; development; embryo;
D O I
10.1242/dev.01615
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mesenchymal stem cells (MSCs) have great clinical potential for the replacement and regeneration of diseased or damaged tissue. They are especially important in the production of the hematopoietic microenvironment, which regulates the maintenance and differentiation of hematopoietic stem cells (HSCs). In the adult, MSCs and their differentiating progeny are found predominantly in the bone marrow (BM). However, it is as yet unknown in which embryonic tissues MSCs reside and whether there is a localized association of these cells within hematopoietic sites during development. To investigate the embryonic origins of these cells, we performed anatomical mapping and frequency analysis of mesenchymal progenitors at several stages of mouse ontogeny. We report here the presence of mesenchymal progenitors, with the potential to differentiate into cells of the osteogenic, adipogenic and chondrogenic lineages, in most of the sites harboring hematopoietic cells. They first appear in the aorta-gonadmesonephros (AGM) region at the time of HSC emergence. However, at this developmental stage, their presence is independent of HSC activity. They increase numerically during development to a plateau level found in adult BM. Additionally, mesenchymal progenitors are found in the embryonic circulation. Taken together, these data show a co-localization of mesenchymal progenitor/stem cells to the major hematopoietic territories, suggesting that, as development proceeds, mesenchymal progenitors expand within these potent hematopoietic sites.
引用
收藏
页码:1127 / 1136
页数:10
相关论文
共 51 条
[1]   Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation [J].
Almeida-Porada, G ;
Porada, CD ;
Tran, N ;
Zanjani, ED .
BLOOD, 2000, 95 (11) :3620-3627
[2]   ENGRAFTMENT OF A CLONAL BONE-MARROW STROMAL CELL-LINE INVIVO STIMULATES HEMATOPOIETIC RECOVERY FROM TOTAL-BODY IRRADIATION [J].
ANKLESARIA, P ;
KASE, K ;
GLOWACKI, J ;
HOLLAND, CA ;
SAKAKEENY, MA ;
WRIGHT, JA ;
FITZGERALD, TJ ;
LEE, CY ;
GREENBERGER, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7681-7685
[3]   Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy [J].
Banfi, A ;
Muraglia, A ;
Dozin, B ;
Mastrogiacomo, M ;
Cancedda, R ;
Quarto, R .
EXPERIMENTAL HEMATOLOGY, 2000, 28 (06) :707-715
[4]   Ontogenic emergence of the hematon, a morphogenetic stromal unit that supports multipotential hematopoietic progenitors in mouse bone marrow [J].
Blazsek, I ;
Chagraoui, J ;
Péault, B .
BLOOD, 2000, 96 (12) :3763-3771
[5]   Monoclonal antibodies reactive with human osteogenic cell surface antigens [J].
Bruder, SP ;
Horowitz, MC ;
Mosca, JD ;
Haynesworth, SE .
BONE, 1997, 21 (03) :225-235
[6]   Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo [J].
Cai, ZL ;
de Bruijn, M ;
Ma, XQ ;
Dortland, B ;
Luteijn, T ;
Downing, JR ;
Dzierzak, E .
IMMUNITY, 2000, 13 (04) :423-431
[7]   Osteoblastic cells regulate the haematopoietic stem cell niche [J].
Calvi, LM ;
Adams, GB ;
Weibrecht, KW ;
Weber, JM ;
Olson, DP ;
Knight, MC ;
Martin, RP ;
Schipani, E ;
Divieti, P ;
Bringhurst, FR ;
Milner, LA ;
Kronenberg, HM ;
Scadden, DT .
NATURE, 2003, 425 (6960) :841-846
[8]  
CHEAH KSE, 1991, DEVELOPMENT, V111, P945
[9]   Pluripotent hematopoietic stem cell development during embryogenesis [J].
Cumano, A ;
Godin, I .
CURRENT OPINION IN IMMUNOLOGY, 2001, 13 (02) :166-171
[10]   Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow [J].
D'Ippolito, G ;
Schiller, PC ;
Ricordi, C ;
Roos, BA ;
Howard, GA .
JOURNAL OF BONE AND MINERAL RESEARCH, 1999, 14 (07) :1115-1122