C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains

被引:241
作者
Brenner, SC [1 ]
Sung, LY [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin methods; fourth order problems; post-processing;
D O I
10.1007/s10915-004-4135-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
C-0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains are analyzed in this paper. A post-processing procedure that can generate C-1 approximate solutions from the C-0 approximate solutions is presented. New C-0 interior penalty methods based on the techniques involved in the post-processing procedure are introduced. These new methods are applicable to rough right-hand sides.
引用
收藏
页码:83 / 118
页数:36
相关论文
共 29 条
[1]  
ADINI A, 1961, G7337NSF
[2]  
[Anonymous], 2003, PURE APPL MAT AMST
[3]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&
[4]   NONCONFORMING ELEMENTS IN FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I ;
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :863-875
[5]  
BACUTA C., 2002, Recent Progress in Computational and Applied PDEs, P1
[6]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[7]  
Belgacem F. B., 2001, Electronic Transactions on Numerical Analysis, V12
[8]  
Bogner F., 1965, Proceedings of the Conference on Matrix Methods in Structural Mechanics, P397
[9]  
Bramble J. H., 1970, SIAM J NUMER ANAL, V7, P113
[10]  
Brenner S.C., 2002, MATH THEORY FINITE E