Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria

被引:88
作者
Leu, J. I-Ju [1 ]
George, Donna L. [1 ]
机构
[1] Univ Penn, Sch Med, Dept Genet, Philadelphia, PA 19104 USA
关键词
BAK; IGFBP1; mitochondrial apoptosis; p53;
D O I
10.1101/gad.1567107
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Liver is generally refractory to apoptosis induced by the p53 tumor suppressor protein, but the molecular basis remains poorly understood. Here we show that p53 transcriptional activation leads to enhanced expression of hepatic IGFBP1 (insulin-like growth factor-binding protein-1). Exhibiting a previously unanticipated role, a portion of intracellular IGFBP1 protein localizes to mitochondria where it binds to the proapoptotic protein BAK and hinders BAK activation and apoptosis induction. Interestingly, in many cells and tissues p53 also has a direct apoptotic function at mitochondria that includes BAK binding and activation. When IGFBP1 is in a complex with BAK, formation of a proapoptotic p53/BAK complex and apoptosis induction are impaired, both in cultured cells and in liver. In contrast, livers of IGFBP1-deficient mice exhibit spontaneous apoptosis that is accompanied by p53 mitochondrial accumulation and evidence of BAK oligomerization. These data support the importance of BAK as a mediator of p53's mitochondrial function. The results also identify IGFBP1 as a negative regulator of the BAK-dependent pathway of apoptosis, whose expression integrates the transcriptional and mitochondrial functions of the p53 tumor suppressor protein.
引用
收藏
页码:3095 / 3109
页数:15
相关论文
共 78 条
[1]   The Bcl-2 apoptotic switch in cancer development and therapy [J].
Adams, J. M. ;
Cory, S. .
ONCOGENE, 2007, 26 (09) :1324-1337
[2]  
Amundson SA, 2000, CANCER RES, V60, P6101
[3]   Transcriptional blockade induces p53-dependent apoptosis associated with translocation of p53 to mitochondria [J].
Arima, Y ;
Nitta, M ;
Kuninaka, S ;
Zhang, DW ;
Fujiwara, T ;
Taya, Y ;
Nakao, M ;
Saya, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (19) :19166-19176
[4]   TIGAR, a p53-inducible regulator of glycolysis and apoptosis [J].
Bensaad, Karim ;
Tsuruta, Atsushi ;
Selak, Mary A. ;
Calvo Vidal, M. Nieves ;
Nakano, Katsunori ;
Bartrons, Ramon ;
Gottlieb, Eyal ;
Vousden, Karen H. .
CELL, 2006, 126 (01) :107-120
[5]   Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins [J].
Brooks, Craig ;
Wei, Qingqing ;
Feng, Leping ;
Dong, Guie ;
Tao, Yanmei ;
Mei, Lin ;
Xie, Zi-Jian ;
Dong, Zheng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (28) :11649-11654
[6]   P53-DEPENDENT APOPTOSIS IN THE ABSENCE OF TRANSCRIPTIONAL ACTIVATION OF P53-TARGET GENES [J].
CAELLES, C ;
HELMBERG, A ;
KARIN, M .
NATURE, 1994, 370 (6486) :220-223
[7]   p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells [J].
Chen, XB ;
Ko, LJ ;
Jayaraman, L ;
Prives, C .
GENES & DEVELOPMENT, 1996, 10 (19) :2438-2451
[8]   PUMA couples the nuclear and cytoplasmic proapoptotic function of p53 [J].
Chipuk, JE ;
Bouchier-Hayes, L ;
Kuwana, T ;
Newmeyer, DD ;
Green, DR .
SCIENCE, 2005, 309 (5741) :1732-1735
[9]   Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription [J].
Chipuk, JE ;
Maurer, U ;
Green, DR ;
Schuler, M .
CANCER CELL, 2003, 4 (05) :371-381
[10]   Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis [J].
Chipuk, JE ;
Kuwana, T ;
Bouchier-Hayes, L ;
Droin, NM ;
Newmeyer, D ;
Schuler, M ;
Green, DR .
SCIENCE, 2004, 303 (5660) :1010-1014