Genetic improvement of Saccharomyces cerevisiae for xylose fermentation

被引:190
作者
Chu, Byron C. H.
Lee, Hung [1 ]
机构
[1] Univ Guelph, Dept Environm Biol, Guelph, ON N1G 2W1, Canada
[2] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioethanol; biomass conversion; fermentation; metabolic engineering; pentose; Saccharomyces cerevisiae; xylitol; xylose; NAD+-XYLITOL-DEHYDROGENASE; AFFINITY GLUCOSE-TRANSPORT; PICHIA-STIPITIS; PACHYSOLEN-TANNOPHILUS; ETHANOLIC FERMENTATION; ALCOHOLIC FERMENTATION; PRODUCT FORMATION; ALDOSE REDUCTASE; CANDIDA-SHEHATAE; ISOMERASE GENE;
D O I
10.1016/j.biotechadv.2007.04.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There is considerable interest in recent years in the bioconversion of forestry and agricultural residues into ethanol and value-added chemicals. High ethanol yields from lignocellulosic residues are dependent on efficient use of all the available sugars including glucose and xylose. The well-known fermentative yeast Saccharomyces cerevisiae is the preferred microorganism for ethanol production, but unfortunately, this yeast is unable to ferment xylose. Over the last 15 years, this yeast has been the subject of various research efforts aimed at improving its ability to utilize xylose and ferment it to ethanol. This review examines the research on S. cerevisiae strains that have been genetically modified or adapted to ferment xylose to ethanol. The current state of these efforts and areas where further research is required are identified and discussed. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:425 / 441
页数:17
相关论文
共 139 条
[1]   CLONING AND EXPRESSION IN SACCHAROMYCES-CEREVISIAE OF THE NAD(P)H-DEPENDENT XYLOSE REDUCTASE-ENCODING GENE (XYL1) FROM THE XYLOSE-ASSIMILATING YEAST PICHIA-STIPITIS [J].
AMORE, R ;
KOTTER, P ;
KUSTER, C ;
CIRIACY, M ;
HOLLENBERG, CP .
GENE, 1991, 109 (01) :89-97
[2]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[3]  
Anderlund M, 1999, APPL ENVIRON MICROB, V65, P2333
[4]   Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation [J].
Anderlund, M ;
Radström, P ;
Hahn-Hägerdal, B .
METABOLIC ENGINEERING, 2001, 3 (03) :226-235
[5]   Metabolic engineering applications to renewable resource utilization [J].
Aristidou, A ;
Penttilä, M .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (02) :187-198
[6]   Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source [J].
Attfield, Paul V. ;
Bell, Philip J. L. .
FEMS YEAST RESEARCH, 2006, 6 (06) :862-868
[7]  
Barnett J A, 1976, Adv Carbohydr Chem Biochem, V32, P125, DOI 10.1016/S0065-2318(08)60337-6
[8]   Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport [J].
Batista, AS ;
Miletti, LC ;
Stambuk, BU .
JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 8 (01) :26-33
[9]   DIRECT EVIDENCE FOR A XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE [J].
BATT, CA ;
CARVALLO, S ;
EASSON, DD ;
AKEDO, M ;
SINSKEY, AJ .
BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (04) :549-553
[10]   INDUCTION OF XYLOSE REDUCTASE AND XYLITOL DEHYDROGENASE-ACTIVITIES IN PACHYSOLEN-TANNOPHILUS AND PICHIA-STIPITIS ON MIXED SUGARS [J].
BICHO, PA ;
RUNNALS, PL ;
CUNNINGHAM, JD ;
LEE, H .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1988, 54 (01) :50-54