Selection pressure-driven aerobic granulation in a sequencing batch reactor

被引:179
作者
Liu, Y [1 ]
Wang, ZW [1 ]
Qin, L [1 ]
Liu, YQ [1 ]
Tay, JH [1 ]
机构
[1] Nanyang Technol Univ, Div Environm & Water Resources Engn, Sch Civil & Environm Engn, Singapore 639798, Singapore
关键词
D O I
10.1007/s00253-004-1820-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In recent years, the research on aerobic granulation has been intensive. So far, almost all aerobic granules can form only in sequencing batch reactors (SBR), while the reason is not yet understood. This paper attempts to review the factors involved in aerobic granulation in SBR, including substrate composition, organic loading rate, hydrodynamic shear force, feast-famine regime, feeding strategy, dissolved oxygen, reactor configuration, solids retention time, cycle time, settling time and exchange ratio. The major selection pressures responsible for aerobic granulation are identified as the settling time and exchange ratio. A concept of the minimal settling velocity of bioparticles is proposed; and it is quantitatively demonstrated that the effects of settling time and exchange ratio on aerobic granulation in SBR can be interpreted and unified on the basis of this concept very well. It appears that the formation and characteristics of aerobic granules can be manipulated through properly adjusting either the settling time or the exchange ratio in SBR. Consequently, theoretical and experimental evidence point to the fact that aerobic granulation is a selection pressure-driven cell-to-cell immobilization process.
引用
收藏
页码:26 / 32
页数:7
相关论文
共 44 条
[1]  
ALPHENAAR PA, 1993, BIORESOURCE TECHNOL, V43, P249, DOI 10.1016/0960-8524(93)90038-D
[2]   Aerobic granulation with industrial wastewater in sequencing batch reactors [J].
Arrojo, B ;
Mosquera-Corral, A ;
Garrido, JM ;
Méndez, R .
WATER RESEARCH, 2004, 38 (14-15) :3389-3399
[3]   Aerobic granulation in a sequencing batch reactor [J].
Beun, JJ ;
Hendriks, A ;
Van Loosdrecht, MCM ;
Morgenroth, E ;
Wilderer, PA ;
Heijnen, JJ .
WATER RESEARCH, 1999, 33 (10) :2283-2290
[4]   Aerobic granulation in a sequencing batch airlift reactor [J].
Beun, JJ ;
van Loosdrecht, MCM ;
Heijnen, JJ .
WATER RESEARCH, 2002, 36 (03) :702-712
[5]   Aerobic granulation [J].
Beun, JJ ;
van Loosdrecht, MCM ;
Heijnen, JJ .
WATER SCIENCE AND TECHNOLOGY, 2000, 41 (4-5) :41-48
[6]   Triggers for microbial aggregation in activated sludge? [J].
Bossier, P ;
Verstraete, W .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1996, 45 (1-2) :1-6
[7]  
Calleja GB, 1984, MICROBIAL AGGREGATIO
[8]   Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process) [J].
Chen, GH ;
An, KJ ;
Saby, S ;
Brois, E ;
Djafer, M .
WATER RESEARCH, 2003, 37 (16) :3855-3866
[9]   Comparison and evaluation of empirical zone settling velocity parameters based on sludge volume index using a unified settling characteristics database [J].
Giokas, DL ;
Daigger, GT ;
von Sperling, M ;
Kim, Y ;
Paraskevas, PA .
WATER RESEARCH, 2003, 37 (16) :3821-3836
[10]   The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules [J].
Hu, LL ;
Wang, JL ;
Wen, XH ;
Qian, Y .
PROCESS BIOCHEMISTRY, 2005, 40 (01) :5-11