The reflection grating spectrometer on board XMM-Newton

被引:831
作者
den Herder, JW
Brinkman, AC
Kahn, SM
Branduardi-Raymont, G
Thomsen, K
Aarts, H
Audard, M
Bixler, JV
den Boggende, AJ
Cottam, J
Decker, T
Dubbeldam, L
Erd, C
Goulooze, H
Güdel, M
Guttridge, P
Hailey, CJ
Al Janabi, K
Kaastra, JS
de Korte, PAJ
van Leeuwen, BJ
Mauche, C
McCalden, AJ
Mewe, R
Naber, A
Paerels, FB
Peterson, JR
Rasmussen, AP
Rees, K
Sakelliou, I
Sako, M
Spodek, J
Stern, M
Tamura, T
Tandy, J
de Vries, CP
Welch, S
Zehnder, A
机构
[1] SRON, NL-3584 CA Utrecht, Netherlands
[2] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA
[3] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[4] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[5] European Space Agcy, Dept Space Sci, Div Astrophys, NL-2200 AG Noordwijk, Netherlands
[6] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
space vehicles; instruments; reflection gratings; XMM-Newton;
D O I
10.1051/0004-6361:20000058
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The ESA X-ray Multi Mirror mission, XMM-Newton, carries two identical Reflection Crating Spectrometers (RGS) behind two of its three nested sets of Welter I type mirrors. The instrument allows high-resolution (E/DeltaE = 100 to 500) measurements in the soft X-ray range (6 to 38 Angstrom or 2.1 to 0.3 keV) with a maximum effective area of about 140 cm(2) at 15 Angstrom. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon, as well as the L shell transitions of iron. The present paper gives a full description of the design of the RGS and its operational modes. We also review details of the calibrations and in-orbit performance including the line spread function, the wavelength calibration, the effective area, and the instrumental background.
引用
收藏
页码:L7 / L17
页数:11
相关论文
共 15 条
[1]  
ASCHENBACH B, 1979, P SOC PHOTOOPT INSTR, V184, P234
[2]   The XMM-Newton view of stellar coronae:: High-resolution X-ray spectroscopy of Capella [J].
Audard, M ;
Behar, E ;
Güdel, M ;
Raassen, AJJ ;
Porquet, D ;
Mewe, R ;
Foley, CR ;
Bromage, GE .
ASTRONOMY & ASTROPHYSICS, 2001, 365 (01) :L329-L335
[3]   Synchrotron calibration and response modelling of back-illuminated XMM-RGS CCDs [J].
Bootsma, TMV ;
van Zwet, EJ ;
Brinkman, AC ;
den Herder, JW ;
de Jong, L ;
de Korte, P ;
Olsthoorn, SM .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 439 (2-3) :575-581
[4]  
BRINKMAN AC, 1998, P 1 XMM WORKSH
[5]  
COTTAM J, 2001, UNPUB
[6]  
CRAIG W, 1988, P SOC PHOTO-OPT INS, V982, P362
[7]  
ERD C, 2000, P SOC PHOTO-OPT INS, P4140
[8]   X-RAY INTERACTIONS - PHOTOABSORPTION, SCATTERING, TRANSMISSION, AND REFLECTION AT E=50-30,000 EV, Z=1-92 [J].
HENKE, BL ;
GULLIKSON, EM ;
DAVIS, JC .
ATOMIC DATA AND NUCLEAR DATA TABLES, 1993, 54 (02) :181-342
[9]   The reflection grating arrays for the reflection grating spectrometer on-board XMM [J].
Kahn, SM ;
Cottam, J ;
Decker, TA ;
Paerels, FBS ;
Pratuch, SM ;
Rasmussen, A ;
Spodek, J ;
Bixler, JV ;
Brinkman, AC ;
denHerder, JW ;
Erd, C .
EUV, X-RAY, AND GAMMA-RAY INSTRUMENTATION FOR ASTRONOMY VII, 1996, 2808 :450-462
[10]  
KAHN SM, 1990, HIGH RESOLUTION XRAY