Nonlinear interactions in renal blood flow regulation

被引:63
作者
Marsh, DJ
Sosnovtseva, OV
Chon, KH
Holstein-Rathlou, NH
机构
[1] Brown Univ, Dept Mol Pharmacol Physiol & Biotechnol, Biomed Ctr, Providence, RI 02912 USA
[2] Danish Tech Univ, Dept Phys, Lyngby, Denmark
[3] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY USA
[4] Univ Copenhagen, Panum Inst, Dept Med Physiol, DK-2200 Copenhagen, Denmark
关键词
tubuloglomerular feedback; myogenic mechanism; oscillations; vasomotion; computer simulation;
D O I
10.1152/ajpregu.00539.2004
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length in a compliant tubule that reabsorbs NaCl and water; boundary conditions are glomerular filtration rate (GFR), a nonlinear outflow resistance, and initial NaCl concentration. The glomerular model calculates GFR from a change in protein concentration using estimates of capillary hydrostatic pressure, tubular hydrostatic pressure, and plasma flow rate. The arteriolar model predicts fraction of open K channels, intracellular Ca concentration (Ca-i), potential difference, rate of actin - myosin cross bridge formation, force of contraction, and length of elastic elements, and was solved for two arteriolar segments, identical except for the strength of TGF input, with a third, fixed resistance segment representing prearteriolar vessels. The two arteriolar segments are electrically coupled. The arteriolar, glomerular, and tubular models are linked; TGF modulates arteriolar circumference, which determines vascular resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller vasomotor oscillation. There are nonlinear interactions between TGF and the myogenic mechanism, which include the modulation of the frequency and amplitude of the myogenic oscillation by TGF. The prediction of modulation is confirmed in a companion study ( 28).
引用
收藏
页码:R1143 / R1159
页数:17
相关论文
共 45 条
[1]  
Arensbak B, 2001, HISTOCHEM CELL BIOL, V115, P479
[2]   Bifurcation analysis of nephron pressure and flow regulation [J].
Barfred, M ;
Mosekilde, E ;
HolsteinRathlou, NH .
CHAOS, 1996, 6 (03) :280-287
[3]   Capillaries and arterioles are electrically coupled in hamster cheek pouch [J].
Beach, JM ;
McGahren, ED ;
Duling, BR .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1998, 275 (04) :H1489-H1496
[4]   AUTOREGULATION AND TUBULOGLOMERULAR FEEDBACK IN JUXTAMEDULLARY GLOMERULAR ARTERIOLES [J].
CASELLAS, D ;
MOORE, LC .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 258 (03) :F660-F669
[5]   Branching patterns and autoregulatory responses of juxtamedullary afferent arterioles [J].
Casellas, D ;
Bouriquet, N ;
Moore, LC .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1997, 272 (03) :F416-F421
[6]   MAGNITUDE OF TGF-INITIATED NEPHRON NEPHRON INTERACTIONS IS INCREASED IN SHR [J].
CHEN, YM ;
YIP, KP ;
MARSH, DJ ;
HOLSTEINRATHLOU, NH .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL FLUID AND ELECTROLYTE PHYSIOLOGY, 1995, 269 (02) :F198-F204
[7]   DETECTION OF INTERACTIONS BETWEEN MYOGENIC AND TGF MECHANISMS USING NONLINEAR-ANALYSIS [J].
CHON, KH ;
CHEN, YM ;
MARMARELIS, VZ ;
MARSH, DJ ;
HOLSTEINRATHLOU, NH .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (01) :F160-F173
[8]   Dynamic autoregulation in the in vitro perfused hydronephrotic rat kidney [J].
Cupples, WA ;
Loutzenhiser, RD .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1998, 275 (01) :F126-F130
[9]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[10]   MODEL OF GLOMERULAR ULTRAFILTRATION IN RAT [J].
DEEN, WM ;
BRENNER, BM ;
ROBERTSON, CR .
AMERICAN JOURNAL OF PHYSIOLOGY, 1972, 223 (05) :1178-+