Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity

被引:70
作者
Joshi, AK [1 ]
Zhang, L [1 ]
Rangan, VS [1 ]
Smith, S [1 ]
机构
[1] Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA
关键词
D O I
10.1074/jbc.M305459200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A single candidate 4'-phosphopantetheine transferase, identified by BLAST searches of the human genome sequence data base, has been cloned, expressed, and characterized. The human enzyme, which is expressed mainly in the cytosolic compartment in a wide range of tissues, is a 329-residue, monomeric protein. The enzyme is capable of transferring the 4'-phosphopantetheine moiety of coenzyme A to a conserved serine residue in both the acyl carrier protein domain of the human cytosolic multifunctional fatty acid synthase and the acyl carrier protein associated independently with human mitochondria. The human 4'-phosphopantetheine transferase is also capable of phosphopantetheinylation of peptidyl carrier and acyl carrier proteins from prokaryotes. The same human protein also has recently been implicated in phosphopantetheinylation of the alpha-aminoadipate semialdehyde dehydrogenase involved in lysine catabolism (Praphanphoj, V., Sacksteder, K. A., Gould, S. J., Thomas, G. H., and Geraghty, M. T. ( 2001) Mol. Genet. Metab. 72, 336 - 342). Thus, in contrast to yeast, which utilizes separate 4'-phosphopantetheine transferases to service each of three different carrier protein substrates, humans appear to utilize a single, broad specificity enzyme for all posttranslational 4'-phosphopantetheinylation reactions.
引用
收藏
页码:33142 / 33149
页数:8
相关论文
共 30 条
[1]   ACTIVITIES OF CITRATE SYNTHASE AND NAD+-LINKED AND NADP+-LINKED ISOCITRATE DEHYDROGENASE IN MUSCLE FROM VERTEBRATES AND INVERTEBRATES [J].
ALP, PR ;
NEWSHOLME, EA ;
ZAMMIT, VA .
BIOCHEMICAL JOURNAL, 1976, 154 (03) :689-700
[2]   Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae [J].
Brody, S ;
Oh, CK ;
Hoja, U ;
Schweizer, E .
FEBS LETTERS, 1997, 408 (02) :217-220
[3]   NEUROSPORA MITOCHONDRIA CONTAIN AN ACYL-CARRIER PROTEIN [J].
BRODY, S ;
MIKOLAJCZYK, S .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 173 (02) :353-359
[4]   Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations [J].
Cane, DE ;
Walsh, CT ;
Khosla, C .
SCIENCE, 1998, 282 (5386) :63-68
[5]   Lysine biosynthesis in Saccharomyces cerevisiae:: Mechanism of α-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5 [J].
Ehmann, DE ;
Gehring, AM ;
Walsh, CT .
BIOCHEMISTRY, 1999, 38 (19) :6171-6177
[6]   A novel function of yeast fatty acid synthase -: Subunit α is capable of self-pantetheinylation [J].
Fichtlscherer, F ;
Wellein, C ;
Mittag, M ;
Schweizer, E .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (09) :2666-2671
[7]   Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa [J].
Finking, R ;
Solsbacher, J ;
Konz, D ;
Schobert, M ;
Schäfer, A ;
Jahn, D ;
Marahiel, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (52) :50293-50302
[8]   Fatty acid and lipoic acid biosynthesis in higher plant mitochondria [J].
Gueguen, V ;
Macherel, D ;
Jaquinod, M ;
Douce, R ;
Bourguignon, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) :5016-5025
[9]  
Heath R. J., 2002, BIOCH LIPIDS LIPOPRO, P55
[10]  
JOSHI AK, 1993, J BIOL CHEM, V268, P22508