A dynamical model of the capital markets

被引:2
作者
Moffat, JW [1 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
来源
PHYSICA A | 1999年 / 264卷 / 3-4期
关键词
D O I
10.1016/S0378-4371(98)00453-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A dynamical theory of the capital markets is proposed based on a continuous-time model and a basic differential equation that governs the price differential, derived by analogy from hydrodynamic flow. A critical number M determines the onset of turbulent behavior of volatility. Scaling laws are formulated for the time-series spectra of volatility distributions, which show intermittency associated with a fractal behavior of the distribution functions. This model may help in an understanding of volatility risk and the relationship between short- and long-term trading in the financial markets. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:532 / 542
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICS FRACT
[2]  
[Anonymous], 1941, DOKL AKAD NAUK+, DOI DOI 10.1098/RSPA.1991.0075
[3]  
Bak P., 1996, NATURE WORKS
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]  
Constantinescu V.N., 1995, LAMINAR VISCOUS FLOW
[6]   Turbulent cascades in foreign exchange markets [J].
Ghashghaie, S ;
Breymann, W ;
Peinke, J ;
Talkner, P ;
Dodge, Y .
NATURE, 1996, 381 (6585) :767-770
[7]  
KOLMOGOROV AN, 1962, J FLUID MECH, V12, P82
[8]  
Landau L.D., 1987, Hydrodynamics
[9]  
LEVY P. P, 1937, Theorie de L'Addition des Variables Aleatoires
[10]  
Mandelbrot BB., 1983, New York, V1st