Circular symmetrization and extremal Robin conditions

被引:4
作者
Cox, SJ
Kawohl, B
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Univ Cologne, Inst Math, D-50923 Cologne, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1999年 / 50卷 / 02期
关键词
average temperature; third type; dual formulation;
D O I
10.1007/s000330050152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the average temperature in a homogeneous disk subject to uniform heating in its interior and Newton's law of cooling, hv + partial derivative v/partial derivative n = 0, on its boundary. More precisely, among those h taking values in a prescribed interval, and of prescribed mean, we identify the minimizer and a maximizer of the average temperature. The latter characterization makes use of circular symmetrization. We include an elementary proof of the fact that such symmetrization does not increase the Dirichlet energy of any H-1 function on the disk.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 11 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
BAUER H, 1957, CR HEBD ACAD SCI, V244, P289
[3]  
BUTTAZZO G, 1988, MAT INSTABILITIES CO, P11
[4]  
COX SJ, IN PRESS SIAM J OPTI
[5]  
DENZLER J, IN PRESS T AMS
[6]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[7]   EXTREMAL EIGENVALUE PROBLEMS DEFINED FOR CERTAIN CLASSES OF FUNCTIONS [J].
FRIEDLAND, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :73-81
[8]  
KAWOHL B, 1985, LNM, V1150
[9]  
Polya G, 1951, ANN MATH STUDIES, V27
[10]   SPHERICAL SYMMETRIZATION AND EIGENVALUE ESTIMATES [J].
SPERNER, E .
MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (01) :75-86