The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis

被引:314
作者
Chang, C
Werb, Z
机构
[1] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Cell Biol Program, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Program Dev Biol, San Francisco, CA 94143 USA
关键词
D O I
10.1016/S0962-8924(01)02122-5
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Metalloproteases are important in many aspects of biology, ranging from cell proliferation, differentiation and remodeling of the extracellular matrix (ECM) to vascularization and cell migration. These events occur several times during organogenesis in both normal development and during tumor progression. Mechanisms of metalloprotease action underlying these events include the proteolytic cleavage of growth factors so that they can become available to cells not in direct physical contact, degradation of the ECM so that founder cells can move across tissues into nearby stroma, and regulated receptor cleavage to terminate migratory signaling. Most of these processes require a delicate balance between the functions of matrix metalloproteases (MMPs) or metalloprotease-disintegrins (ADAMs) and natural tissue inhibitors of metalloproteases (TIMPs). In this review, we discuss recent progress in identifying an essential role for metalloproteases in axon outgrowth, as an example of a focal invasive event. We also discuss the evolving concept of how MMPs might regulate stem cell fate during tumor development.
引用
收藏
页码:S37 / S43
页数:7
相关论文
共 46 条
[1]   Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration [J].
Alfandari, D ;
Cousin, H ;
Gaultier, A ;
Smith, K ;
White, JM ;
Darribère, T ;
DeSimone, DW .
CURRENT BIOLOGY, 2001, 11 (12) :918-930
[2]   c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny [J].
Arnold, I ;
Watt, FM .
CURRENT BIOLOGY, 2001, 11 (08) :558-568
[3]   Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis [J].
Bergers, G ;
Brekken, R ;
McMahon, G ;
Vu, TH ;
Itoh, T ;
Tamaki, K ;
Tanzawa, K ;
Thorpe, P ;
Itohara, S ;
Werb, Z ;
Hanahan, D .
NATURE CELL BIOLOGY, 2000, 2 (10) :737-744
[4]   PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor [J].
Bergsten, E ;
Uutela, M ;
Li, XR ;
Pietras, K ;
Östman, A ;
Heldin, CH ;
Alitalo, K ;
Eriksson, U .
NATURE CELL BIOLOGY, 2001, 3 (05) :512-516
[5]   Angiogenesis in cancer and other diseases [J].
Carmeliet, P ;
Jain, RK .
NATURE, 2000, 407 (6801) :249-257
[6]   C-elegans vulval development as a model system to study the cancer biology of EGFR signaling [J].
Chang, C ;
Sternberg, PW .
CANCER AND METASTASIS REVIEWS, 1999, 18 (02) :203-213
[7]   Genomic analysis of metastasis reveals an essential role for RhoC [J].
Clark, EA ;
Golub, TR ;
Lander, ES ;
Hynes, RO .
NATURE, 2000, 406 (6795) :532-535
[8]  
Compagni A, 2000, CANCER RES, V60, P7163
[9]   Inflammatory cells and cancer: Think different! [J].
Coussens, LM ;
Werb, Z .
JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 193 (06) :F23-F26
[10]   Eph receptors and ephrin ligands: embryogenesis to tumorigenesis [J].
Dodelet, VC ;
Pasquale, EB .
ONCOGENE, 2000, 19 (49) :5614-5619