By means of the conformational free energy surface and corresponding diffusion coefficients, as obtained by long time scale atomistic molecular dynamics simulations (mu s time scale), we model the folding kinetics of alpha-helix and beta-hairpin peptides as a diffusive process over the free energy surface. The two model systems studied in this paper (the alpha-helical temporin L and the beta-hairpin prion protein H1 peptide) exhibit a funnel-like almost barrierless free energy profile, leading to nonexponential folding kinetics matching rather well the available experimental data. Moreover, using the free energy profile provided by Munoz et al. [Munoz et al. Nature 1997, 390: 196-199], this model was also applied to reproduce the two-state folding kinetics of the C-terminal beta-hairpin of protein GB1, yielding an exponential folding kinetics with a time constant (similar to 5 mu s) in excellent agreement with the experimentally observed one (similar to 6 mu s). Finally, the folding kinetics obtained by solving the diffusion equation, considering either a one-dimensional or a two-dimensional free energy surface, are also compared in order to understand the relevance of the possible kinetic coupling between conformational degrees of freedom in the folding process.