The Formation Mechanism of Fluorescent Metal Complexes at the LixNi0.5Mn1.5O4-δ/Carbonate Ester Electrolyte Interface

被引:191
作者
Jarry, Angelique [1 ]
Gottis, Sebastien [1 ]
Yu, Young-Sang [2 ]
Roque-Rosell, Josep [2 ]
Kim, Chunjoong [3 ]
Cabana, Jordi [3 ]
Kerr, John [1 ]
Kostecki, Robert [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[3] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
关键词
LI-ION; CATHODE MATERIALS; CHARGE-TRANSFER; LITHIUM; CHALLENGES; SURFACE; SPINEL; PERFORMANCE; DISSOLUTION; CARBONATE;
D O I
10.1021/ja5116698
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical oxidation of carbonate esters at the LixNi0.5Mn1.5O4-delta/electrolyte interface results in Ni/Mn dissolution and surface film formation, which negatively affect the electrochemical performance of Li-ion batteries. Ex situ X-ray absorption (XRF/XANES), Raman, and fluorescence spectroscopy, along with imaging of LixNi0.5Mn1.5O4-delta positive and graphite negative electrodes from tested Li-ion batteries, reveal the formation of a variety of Mn-II/III and Ni-II complexes with beta-diketonate ligands. These metal complexes, which are generated upon anodic oxidation of ethyl and diethyl carbonates at LixNi0.5Mn1.5O4-delta, form a surface film that partially dissolves in the electrolyte. The dissolved Mn-III complexes are reduced to their Mn-II analogues, which are incorporated into the solid electrolyte interphase surface layer at the graphite negative electrode. This work elucidates possible reaction pathways and evaluates their implications for Li+ transport kinetics in Li-ion batteries.
引用
收藏
页码:3533 / 3539
页数:7
相关论文
共 49 条
[1]   Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces [J].
Adler, S. B. ;
Chen, X. Y. ;
Wilson, J. R. .
JOURNAL OF CATALYSIS, 2007, 245 (01) :91-109
[2]   Oxide surfaces as environmental interfaces [J].
Al-Abadleh, HA ;
Grassian, VH .
SURFACE SCIENCE REPORTS, 2003, 52 (3-4) :63-161
[3]  
Ammundsen B, 2001, ADV MATER, V13, P943, DOI 10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO
[4]  
2-J
[5]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[6]  
Aziz EF, 2010, NAT CHEM, V2, P853, DOI [10.1038/NCHEM.768, 10.1038/nchem.768]
[7]   Role of the support nature in chemisorption of Ni(acac)(2) on the surface of silica and alumina [J].
Babich, IV ;
Plyuto, YV ;
VanLangeveld, AD ;
Moulijn, JA .
APPLIED SURFACE SCIENCE, 1997, 115 (03) :267-272
[8]   Raman Microspectrometry Applied To The Study Of Electrode Materials For Lithium Batteries [J].
Baddour-Hadjean, Rita ;
Pereira-Ramos, Jean-Pierre .
XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 :1137-+
[9]   Quantum Chemistry Studies of the Oxidative Stability of Carbonate, Sulfone and Sulfonate-Based Electrolytes Doped with BF4-, PF6- Anions [J].
Borodin, Oleg ;
Jow, T. Richard .
NON-AQUEOUS ELECTROLYTES FOR LITHIUM BATTERIES, 2011, 33 (28) :77-84
[10]   CRYSTAL AND MOLECULAR STRUCTURE OF BIS(ACETYLACETONATO)NICKEL(2) [J].
BULLEN, GJ ;
MASON, R ;
PAULING, P .
INORGANIC CHEMISTRY, 1965, 4 (04) :456-&