Activity-dependent plasticity in an olfactory circuit

被引:155
作者
Sachse, Silke [1 ]
Rueckert, Erroll [2 ,3 ]
Keller, Andreas [1 ]
Okada, Ryuichi [4 ]
Tanaka, Nobuaki K. [4 ]
Ito, Kei [4 ]
Vosshall, Leslie B. [1 ]
机构
[1] Rockefeller Univ, Lab Neurogenet & Behav, New York, NY 10065 USA
[2] Columbia Univ Coll Phys & Surg, Howard Hughes Med Inst, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[3] Columbia Univ Coll Phys & Surg, Howard Hughes Med Inst, Ctr Neurobiol & Behav, New York, NY 10032 USA
[4] Univ Tokyo, Inst Mol & Cellular Biosci, Bunkyo Ku, Tokyo 1130032, Japan
关键词
D O I
10.1016/j.neuron.2007.10.035
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila. Specialized OSNs detect this gas and relay the information to a dedicated circuit in the brain. Prolonged exposure to CO2 induced a reversible volume increase in the CO2-specific glomerulus. OSNs showed neither altered morphology nor function after chronic exposure, but one class of inhibitory local interneurons showed significantly increased responses to CO2. Two-photon imaging of the axon terminals of a single PN innervating the CO2 glomerulus showed significantly decreased functional output following CO2 exposure. Behavioral responses to CO2 were also reduced after such exposure. We suggest that activity-dependent functional plasticity may be a general feature of the Drosophila olfactory system.
引用
收藏
页码:838 / 850
页数:13
相关论文
共 64 条
[1]   Dock and Pak regulate olfactory axon pathfinding in Drosophila [J].
Ang, LH ;
Kim, J ;
Stepensky, V ;
Hing, H .
DEVELOPMENT, 2003, 130 (07) :1307-1316
[2]   Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo [J].
Benton, R ;
Sachse, S ;
Michnick, SW ;
Vosshall, LB .
PLOS BIOLOGY, 2006, 4 (02) :240-257
[3]   Wiring stability of the adult Drosophila olfactory circuit after lesion [J].
Berdnik, D ;
Chihara, T ;
Couto, A ;
Luo, LQ .
JOURNAL OF NEUROSCIENCE, 2006, 26 (13) :3367-3376
[4]   GABAergic mechanisms that shape the temporal response to odors in moth olfactory projection neurons [J].
Christensen, TA ;
Waldrop, BR ;
Hildebrand, JG .
OLFACTION AND TASTE XII: AN INTERNATIONAL SYMPOSIUM, 1998, 855 :475-481
[5]   Molecular, anatomical, and functional organization of the Drosophila olfactory system [J].
Couto, A ;
Alenius, M ;
Dickson, BJ .
CURRENT BIOLOGY, 2005, 15 (17) :1535-1547
[6]   Axonal ephrin-as and odorant receptors:: Coordinate determination of the olfactory sensory map [J].
Cutforth, T ;
Moring, L ;
Mendelsohn, M ;
Nemes, A ;
Shah, NM ;
Kim, MM ;
Frisén, J ;
Axel, R .
CELL, 2003, 114 (03) :311-322
[7]   Odor coding in the Drosophila antenna [J].
de Bruyne, M ;
Foster, K ;
Carlson, JR .
NEURON, 2001, 30 (02) :537-552
[8]   Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age [J].
Devaud, JM ;
Acebes, A ;
Ramaswami, M ;
Ferrús, A .
JOURNAL OF NEUROBIOLOGY, 2003, 56 (01) :13-23
[9]   Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila [J].
Devaud, JM ;
Acebes, A ;
Ferrús, A .
JOURNAL OF NEUROSCIENCE, 2001, 21 (16) :6274-6282
[10]   Integrating the molecular and cellular basis of odor coding in the Drosophila antenna [J].
Dobritsa, AA ;
van der Goes van Naters, W ;
Warr, CG ;
Steinbrecht, RA ;
Carlson, JR .
NEURON, 2003, 37 (05) :827-841