Large deviations for increasing sequences on the plane

被引:42
作者
Seppalainen, T [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
increasing sequences; large deviations; subadditive processes; Hammersley's process;
D O I
10.1007/s004400050188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a large deviation principle with explicit rate functions for the length of the longest increasing sequence among Poisson points on the plane. The rate function for lower tail deviations is derived from a 1977 result of Logan and Shepp about Young diagrams of random permutations. For the upper tail we use a coupling with Hammersley's particle process and convex-analytic techniques. Along the way we obtain the rate function for the lower tail of a tagged particle in a totally asymmetric Hammersley's process.
引用
收藏
页码:221 / 244
页数:24
相关论文
共 17 条
[1]   HAMMERSLEYS INTERACTING PARTICLE PROCESS AND LONGEST INCREASING SUBSEQUENCES [J].
ALDOUS, D ;
DIACONIS, P .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 103 (02) :199-213
[2]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[3]  
DEUSCHEL JD, IN PRESS COMBIN PROB
[4]   SOME MIN-MAX METHODS FOR THE HAMILTON-JACOBI EQUATION [J].
EVANS, LC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :31-50
[5]  
FERRARI PA, 1996, MARKOV PROCESS RELAT, V2, P17
[6]  
Hammersley J.M., 1972, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, VI, P345
[7]  
JOHANSSON K, IN PRESS MATH RES LE
[8]   On increasing subsequences of random permutations [J].
Kim, JH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (01) :148-155
[9]  
KINGMAN JFC, 1968, J ROY STAT SOC B, V30, P499
[10]  
Lions Pierre-Louis., 1987, REV MATEMATICA IBERO, P275