Sparse canonical correlation analysis

被引:190
作者
Hardoon, David R. [1 ,2 ]
Shawe-Taylor, John [2 ]
机构
[1] ASTAR, Inst Infocomm Res I2R, Data Min Dept, Singapore 138632, Singapore
[2] UCL, Dept Comp Sci, Ctr Computat Stat & Machine Learning, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Sparsity; Canonical correlation analysis;
D O I
10.1007/s10994-010-5222-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel method for solving Canonical Correlation Analysis (CCA) in a sparse convex framework using a least squares approach. The presented method focuses on the scenario when one is interested in (or limited to) a primal representation for the first view while having a dual representation for the second view. Sparse CCA (SCCA) minimises the number of features used in both the primal and dual projections while maximising the correlation between the two views. The method is compared to alternative sparse solutions as well as demonstrated on paired corpuses for mate-retrieval. We are able to observe, in the mate-retrieval, that when the number of the original features is large SCCA outperforms Kernel CCA (KCCA), learning the common semantic space from a sparse set of features.
引用
收藏
页码:331 / 353
页数:23
相关论文
共 36 条
[1]  
Akaho S., 2001, INT M PSYCH SOC OS
[2]  
[Anonymous], P 4 INT S IND COMP A
[3]  
[Anonymous], 2004, KERNEL METHODS PATTE
[4]  
[Anonymous], 2007, INT C MACH LEARN ICM
[5]  
[Anonymous], 2002, Journal of machine learning research
[6]  
[Anonymous], SPARSE CANONICAL COR
[7]  
[Anonymous], P 3 INT WORKSH CONT
[8]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[9]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[10]   A direct formulation for sparse PCA using semidefinite programming [J].
d'Aspremont, Alexandre ;
El Ghaoui, Laurent ;
Jordan, Michael I. ;
Lanckriet, Gert R. G. .
SIAM REVIEW, 2007, 49 (03) :434-448