Resonant Raman spectroscopy of single-wall carbon nanotubes under pressure

被引:104
作者
Merlen, A
Bendiab, N
Toulemonde, P
Aouizerat, A
San Miguel, A [1 ]
Sauvajol, JL
Montagnac, G
Cardon, H
Petit, P
机构
[1] Univ Lyon 1, Lab Phys Mat Condensee & Nanostruct, F-69622 Villeurbanne, France
[2] CNRS, F-69622 Villeurbanne, France
[3] Univ Montpellier 2, Lab Colloides Verres & Nanomet, F-34095 Montpellier, France
[4] CNRS, UMR 5587, F-34095 Montpellier, France
[5] Ecole Normale Super Lyon, Sci Labs, F-69364 Lyon, France
[6] CNRS, F-69364 Lyon, France
[7] Inst Charles Sadron, CNRS, F-67083 Strasbourg, France
关键词
D O I
10.1103/PhysRevB.72.035409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We performed high pressure resonant Raman experiments on well characterized purified single-wall carbon nanotubes up to 40 GPa using argon as pressure transmitting medium. We used two different excitating wavelengths, at 632.8 nm and 514.5 nm. In contrast with other studies no clear sign of phase transformation is observed up to the highest studied pressure of 40 GPa. Our results suggest that the progressive disappearance of the radial breathing modes observed while increasing pressure should not be interpreted as the sign of a structural phase transition. Moreover, a progressive change of profile of the tangential modes is observed. For pressures higher than 20 GPa the profile of those modes is the same for both laser excitations. We conclude that a progressive loss of resonance of single-wall carbon nanotubes under pressure might occur. In addition, after high pressure cycle we observed a decrease of intensity of the radial breathing and tangential modes and a strong increase of the D band.
引用
收藏
页数:6
相关论文
共 37 条
[1]  
ALMAIRAC R, COMMUNICATION
[2]   Stoichiometry dependence of the Raman spectrum of alkali-doped single-wall carbon nanotubes [J].
Bendiab, N ;
Anglaret, E ;
Bantignies, JL ;
Zahab, A ;
Sauvajol, JL ;
Petit, P ;
Mathis, C ;
Lefrant, S .
PHYSICAL REVIEW B, 2001, 64 (24) :2454241-2454246
[3]   Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes -: art. no. 155414 [J].
Brown, SDM ;
Jorio, A ;
Corio, P ;
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Kneipp, K .
PHYSICAL REVIEW B, 2001, 63 (15)
[4]   Carbon nanotube bundles under high pressure: Transformation to low-symmetry structures [J].
Chan, SP ;
Yim, WL ;
Gong, XG ;
Liu, ZF .
PHYSICAL REVIEW B, 2003, 68 (07)
[5]   Electronic properties of carbon nanotubes with polygonized cross sections [J].
Charlier, JC ;
Lambin, P ;
Ebbesen, TW .
PHYSICAL REVIEW B, 1996, 54 (12) :R8377-R8380
[6]   Crystals of covalently bonded carbon nanotubes: Energetics and electronic structures [J].
Chernozatonskii, L ;
Richter, E ;
Menon, M .
PHYSICAL REVIEW B, 2002, 65 (24) :1-4
[7]   Collapse of single-wall carbon nanotubes is diameter dependent [J].
Elliott, JA ;
Sandler, JKW ;
Windle, AH ;
Young, RJ ;
Shaffer, MSP .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :095501-1
[8]   Structural changes in single-walled carbon nanotubes under non-hydrostatic pressures: x-ray and Raman studies [J].
Karmakar, S ;
Sharma, SM ;
Teredesai, PV ;
Muthu, DVS ;
Govindaraj, A ;
Sikka, SK ;
Sood, AK .
NEW JOURNAL OF PHYSICS, 2003, 5 :143.1-143.11
[9]   Optical properties of single-wall carbon nanotubes [J].
Kataura, H ;
Kumazawa, Y ;
Maniwa, Y ;
Umezu, I ;
Suzuki, S ;
Ohtsuka, Y ;
Achiba, Y .
SYNTHETIC METALS, 1999, 103 (1-3) :2555-2558
[10]   Effect of a liquid pressure-transmitting medium on the high pressure behavior of open- and closed-end single-walled carbon nanotubes and of C60-peapods [J].
Kawasaki, S ;
Matsuoka, Y ;
Yokomae, T ;
Nojima, Y ;
Okino, F ;
Touhara, H ;
Kataura, H .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2004, 241 (15) :3512-3516