Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries

被引:249
作者
Kawabe, Yoshiteru [1 ,2 ]
Yabuuchi, Naoaki [1 ]
Kajiyama, Masataka [1 ]
Fukuhara, Norihito [2 ]
Inamasu, Tokuo [2 ]
Okuyama, Ryoichi [2 ]
Nakai, Izumi [1 ]
Komaba, Shinichi [1 ]
机构
[1] Tokyo Univ Sci, Dept Appl Chem, Shinjuku Ku, Tokyo 1628601, Japan
[2] GS Yuasa Int Ltd, R&D Ctr, Minami Ku, Kyoto 6018520, Japan
关键词
Na battery; Sodium insertion; PHOSPHATE; CATHODE;
D O I
10.1016/j.elecom.2011.08.038
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon-coated Na2FePO4F is synthesized by a simple solid-state method with ascorbic acid as carbon source. Structural characterization of Na2FePO4F by synchrotron X-ray diffraction, scanning/transmission electron microscopy, and Raman spectroscopy reveals that ascorbic acid effectively suppresses the particle growth of Na2FePO4F, forming the nano-sized carbon coated materials. Electrode performance of Na2FePO4F for rechargeable sodium batteries is also examined. The carbon-coated Na2FePO4F sample (1.3 wt% carbon) delivers initial discharge capacity of 110 mAh g(-1) at a rate of 1/20 C (6.2 mA g(-1)) with well-defined voltage plateaus at 3.06 and 2.91 V vs. Na metal. The sample also shows acceptable capacity retention and rate capability as the positive electrode materials for rechargeable Na batteries, which is operable at room temperature. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1225 / 1228
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 78 ANN M EL SOC JAP
[2]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[3]   Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 [J].
Ellis, B. ;
Kan, Wang Hay ;
Makahnouk, W. R. M. ;
Nazar, L. F. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3248-3254
[4]   A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries [J].
Ellis, B. L. ;
Makahnouk, W. R. M. ;
Makimura, Y. ;
Toghill, K. ;
Nazar, L. F. .
NATURE MATERIALS, 2007, 6 (10) :749-753
[5]   Phase transformation studies of Na3PO4 by thermo-Raman and conductivity measurements [J].
Ghule, A ;
Baskaran, N ;
Murugan, R ;
Chang, H .
SOLID STATE IONICS, 2003, 161 (3-4) :291-299
[6]   Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries [J].
Komaba, Shinichi ;
Murata, Wataru ;
Ishikawa, Toru ;
Yabuuchi, Naoaki ;
Ozeki, Tomoaki ;
Nakayama, Tetsuri ;
Ogata, Atsushi ;
Gotoh, Kazuma ;
Fujiwara, Kazuya .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) :3859-3867
[7]  
Nakamoto K., 2009, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, DOI DOI 10.1002/9780470405888.CH1
[8]   Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid [J].
Ni, Jiangfeng ;
Morishita, Masanori ;
Kawabe, Yoshiteru ;
Watada, Masaharu ;
Takeichi, Nobuhiko ;
Sakai, Tetsuo .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2877-2882
[9]  
Okada S., 2006, 210 ECS M ABSTRACTS, VMA2006, P201, DOI DOI 10.1149/MA2006-02/4/201
[10]   Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1188-1194