Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain

被引:16
作者
Chern, Mawsheng [1 ]
Canlas, Patrick E. [1 ]
Ronald, Pamela C. [1 ]
机构
[1] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA
关键词
NRR; NPR1; SA; SAR; disease resistance;
D O I
10.1093/mp/ssn017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Systemic Acquired Resistance (SAR) in plants confers lasting broad-spectrum resistance to pathogens and requires the phytohormone salicylic acid (SA). Arabidopsis NPR1/NIM1 is a key regulator of the SAR response. Studies attempting to reveal the function of NPR1 and how it mediates SA signaling have led to isolation of two classes of proteins that interact with NPR1: the first class includes rice NRR, Arabidopsis NIMIN1, NIMIN2, and NIMIN3, and tobacco NIMIN2-like proteins; the second class belongs to TGA transcription factors. We have previously shown that overexpression of NRR in rice suppresses both basal and Xa21-mediated resistance. In order to test whether NRR affects SA-induced, NPR1-mediated SAR, we have transformed Arabidopsis with the rice NRR gene and tested its effects on the defense response. Expression of NRR in Arabidopsis results in suppression of PR gene induction by SAR inducer and resistance to pathogens. These phenotypes are even more severe than those of the npr1-1 mutant. The ability of NRR to suppress PR gene induction and disease resistance is correlated with its ability to bind to NPR1 because two point mutations in NRR, which reduce NPR1 binding, fail to suppress NPR1. In contrast, wild-type and a mutant NRR, which still binds to NPR1 strongly, retain the ability to suppress the SAR response. Replacing the C-terminal 79 amino acids of NRR with the VP16 activation domain turns the fusion protein into a transcriptional co-activator. These results indicate that NRR binds to NPR1 in vivo in a protein complex to inhibit transcriptional activation of PR genes and that NRR contains a transcription repression domain for active repression.
引用
收藏
页码:552 / 559
页数:8
相关论文
共 31 条
[1]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[2]   Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J].
Cao, H ;
Li, X ;
Dong, XN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6531-6536
[3]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[4]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[5]   Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1 [J].
Chern, M ;
Canlas, PE ;
Fitzgerald, HA ;
Ronald, PC .
PLANT JOURNAL, 2005, 43 (05) :623-635
[6]   Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light [J].
Chern, M ;
Fitzgerald, HA ;
Canlas, PE ;
Navarre, DA ;
Ronald, PC .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2005, 18 (06) :511-520
[7]   Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis [J].
Chern, MS ;
Fitzgerald, HA ;
Yadav, RC ;
Canlas, PE ;
Dong, XN ;
Ronald, PC .
PLANT JOURNAL, 2001, 27 (02) :101-113
[8]   Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants [J].
Christensen, AH ;
Quail, PH .
TRANSGENIC RESEARCH, 1996, 5 (03) :213-218
[9]   ARABIDOPSIS SIGNAL-TRANSDUCTION MUTANT DEFECTIVE IN CHEMICALLY AND BIOLOGICALLY INDUCED DISEASE RESISTANCE [J].
DELANEY, TP ;
FRIEDRICH, L ;
RYALS, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6602-6606
[10]   The arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors [J].
Després, C ;
DeLong, C ;
Glaze, S ;
Liu, E ;
Fobert, PR .
PLANT CELL, 2000, 12 (02) :279-290