Expansions for Markov-modulated systems and approximations of ruin probability

被引:5
作者
Blaszczyszyn, B
Rolski, T
机构
关键词
ruin probability; n-fold palm distributions; Campbell measure; factorial moment measure; Markov-modulated marked point process; general premium rate; expansion; analyticity;
D O I
10.2307/3215264
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let N be a stationary Markov-modulated marked point process on R with intensity beta* and consider a real-valued functional psi(N). In this paper we study expansions of the form E psi(N) = a(0) + beta*a(1) + ... + (beta*)(n)a(n) + o((beta*)(n)) for beta* --> 0. Formulas for the coefficients a(1) are derived in terms of factorial moment measures of N. We compute a(1) and a(2) for the probability of ruin phi(u) with initial capital u for the risk process in the Markov-modulated environment; a(0)=0. Moreover, we give a sufficient condition for phi(u) to be an analytic function of beta*. We allow the premium rate function p(x) to depend on the actual risk reserve.
引用
收藏
页码:57 / 70
页数:14
相关论文
共 28 条
[1]   RUIN PROBABILITIES EXPRESSED IN TERMS OF STORAGE PROCESSES [J].
ASMUSSEN, S ;
PETERSEN, SS .
ADVANCES IN APPLIED PROBABILITY, 1988, 20 (04) :913-916
[2]   LADDER HEIGHTS AND THE MARKOV-MODULATED M/G/1 QUEUE [J].
ASMUSSEN, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 37 (02) :313-326
[3]  
ASMUSSEN S, 1989, SCAND ACTUAR J, P69
[4]  
ASMUSSEN S, 1991, ANN APPL PROB, V2, P555
[5]  
ASMUSSEN S, 1993, UNPUB FUNDAMENTALS R
[6]  
ASMUSSEN S, 1993, PHASE TYPE DISTRIBUT
[7]   VIRTUAL CUSTOMERS IN SENSITIVITY AND LIGHT TRAFFIC ANALYSIS VIA CAMPBELL FORMULA FOR POINT-PROCESSES [J].
BACCELLI, F ;
BREMAUD, P .
ADVANCES IN APPLIED PROBABILITY, 1993, 25 (01) :221-234
[8]   FACTORIAL MOMENT EXPANSION FOR STOCHASTIC-SYSTEMS [J].
BLASZCZYSZYN, B .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 56 (02) :321-335
[9]  
BLASZCZYSZYN B., 1993, ANN APPL PROBAB, V3, P881
[10]  
BREMAUD P, 1992, COMMUNICATION