Estimating the structural dimension of regressions via parametric inverse regression

被引:104
作者
Bura, E
Cook, RD
机构
[1] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[2] Univ Minnesota, St Paul, MN 55108 USA
关键词
asymptotic test for dimension; dimension reduction; inverse regression; parametric inverse regression; sliced inverse regression;
D O I
10.1111/1467-9868.00292
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new estimation method for the dimension of a regression at the outset of an analysis is proposed. A linear subspace spanned by projections of the regressor vector X, which contains part or all of the modelling information for the regression of a vector Y on X, and its dimension are estimated via the means of parametric inverse regression. Smooth parametric curves are fitted to the p inverse regressions via a multivariate linear model. No restrictions are placed on the distribution of the regressors. The estimate of the dimension of the regression is based on optimal estimation procedures. A simulation study shows the method to be more powerful than sliced inverse regression in some situations.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 27 条
  • [1] Billingsley P., 1995, Probability and measure, VThird
  • [2] BUNKE H, 1986, STAT INFERENCE LINEA, V1
  • [3] BURA E, 1999, IN PRESS J AM STAT A
  • [4] BURA E, 1996, THESIS U MINNESOTA S
  • [5] CAMDEN M, 1989, DATA BUNDLE
  • [6] Cook D.R., 1999, APPL REGRESSION INCL
  • [7] Cook R.D., 1994, INTRO REGRESSION GRA
  • [8] Cook R. D., 1998, WILEY PROB STAT
  • [9] REWEIGHTING TO ACHIEVE ELLIPTICALLY CONTOURED COVARIATES IN REGRESSION
    COOK, RD
    NACHTSHEIM, CJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) : 592 - 599
  • [10] COOK RD, 1994, AMERICAN STATISTICAL ASSOCIATION 1994 PROCEEDINGS OF THE SECTION ON PHYSICAL AND ENGINEERING SCIENCES, P18