Mirror symmetry is T-duality

被引:797
作者
Strominger, A [1 ]
Yau, ST [1 ]
Zaslow, E [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
mirror symmetry; duality; D-branes; BPS;
D O I
10.1016/0550-3213(96)00434-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
It is argued that every Calabi-Yau manifold X with a mirror Y admits a family of supersymmetric toroidal 3-cycles. Moreover the moduli space of such cycles together with their flat connections is precisely the space Y. The mirror transformation is equivalent to T-duality on the 3-cycles, The geometry of moduli space is addressed in a general framework, Several examples are discussed.
引用
收藏
页码:243 / 259
页数:17
相关论文
共 20 条
[1]   N=1 heterotic/M-theory duality and joyce manifolds [J].
Acharya, BS .
NUCLEAR PHYSICS B, 1996, 475 (03) :579-596
[2]   On the ubiquity of K3 fibrations in string duality [J].
Aspinwall, PS ;
Louis, J .
PHYSICS LETTERS B, 1996, 369 (3-4) :233-242
[3]   U-DUALITY AND INTEGRAL STRUCTURES [J].
ASPINWALL, PS ;
MORRISON, DR .
PHYSICS LETTERS B, 1995, 355 (1-2) :141-149
[4]   FIVEBRANES, MEMBRANES AND NONPERTURBATIVE STRING THEORY [J].
BECKER, K ;
BECKER, M ;
STROMINGER, A .
NUCLEAR PHYSICS B, 1995, 456 (1-2) :130-152
[5]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74
[6]  
GIVEON A, IN PRESS ESSAYS MIRR, V2
[7]   STRINGY COSMIC STRINGS AND NONCOMPACT CALABI-YAU MANIFOLDS [J].
GREENE, BR ;
SHAPERE, A ;
VAFA, C ;
YAU, ST .
NUCLEAR PHYSICS B, 1990, 337 (01) :1-36
[8]  
Harvey FR, 1990, Perspectives in Mathematics
[9]   N=1 STRING DUALITY [J].
HARVEY, JA ;
LOWE, DA ;
STROMINGER, A .
PHYSICS LETTERS B, 1995, 362 (1-4) :65-72
[10]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157