Machine learning unifies the modeling of materials and molecules

被引:536
作者
Bartok, Albert P. [1 ]
De, Sandip [2 ,3 ]
Poelking, Carl [4 ]
Bernstein, Noam [5 ]
Kermode, James R. [6 ]
Csanyi, Gabor [7 ]
Ceriotti, Michele [2 ,3 ]
机构
[1] Rutherford Appleton Lab, Sci Comp Dept, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England
[2] Natl Ctr Computat Design & Discovery Novel Mat MA, Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Lab Computat Sci & Modelling, Inst Mat, Lausanne, Switzerland
[4] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[5] US Naval Res Lab, Ctr Mat Phys & Technol, Washington, DC 20375 USA
[6] Univ Warwick, Sch Engn, Warwick Ctr Predict Modelling, Coventry CV4 7AL, W Midlands, England
[7] Univ Cambridge, Engn Lab, Cambridge, England
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 12期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
FORCE-FIELD; RECONSTRUCTION; APPROXIMATIONS; SOLIDS; SETS; 1ST;
D O I
10.1126/sciadv.1701816
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Determining the stability ofmolecules and condensed phases is the cornerstone of atomisticmodeling, underpinning our understanding of chemical andmaterials properties and transformations. We show that amachine-learningmodel, based on a local description of chemical environments and Bayesian statistical learning, provides a unified framework to predict atomic-scale properties. It captures the quantum mechanical effects governing the complex surface reconstructions of silicon, predicts the stability of different classes of molecules with chemical accuracy, and distinguishes active and inactive protein ligands with more than 99% reliability. The universality and the systematic nature of our framework provide new insight into the potential energy surface of materials and molecules.
引用
收藏
页数:8
相关论文
共 66 条
[1]  
[Anonymous], 2012, MODERN QUANTUM CHEM
[2]  
[Anonymous], 2016 IEEE INT C BIOI
[3]  
[Anonymous], SOAPXX
[4]  
[Anonymous], 2002, PRESS SERIES
[5]  
[Anonymous], 2015, ARXIV151002855
[6]  
[Anonymous], 2016, MOPAC
[7]   High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide [J].
Artrith, Nongnuch ;
Morawietz, Tobias ;
Behler, Joerg .
PHYSICAL REVIEW B, 2011, 83 (15)
[8]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[9]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[10]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652